Elution Chromatography Elution Chromatography

Kinetic Analysis Kinetic Analysis Scaling up Chromatography

Contents Contents

- Kinetic Analysis
	- -- Introduction
	- -A quantitative approximation
	- -Examples
- Scaling up Chromatography
	- -Changes in the standard deviation
	- -Scaling up the separation
	- Examples

Kinetic Analysis Kinetic Analysis

• Introduction

- The column contain equilibrium stages
- The concentration profile is the result of diffusion and chemical reaction
- - The actual diffusion and chemical reaction between solute and packing(5 step)

 To see the effects of diffusion and reaction, a solute pulse flowing into a packed column

Figure 1. Modeling elution chromatography with rate processes

• **A quantitative approximation**

Mass balance equation

z y z ^y ^Etq ty ∂∂∂∂=∂∂+ [−] ∂∂ε ε υ 22(1) y, q = concentration of the solutes in mobile and stationary phase z = column length t = time*v* = linear velicity of the mobile phase ε = void fractionE = apparent axial dispersion coefficient

-In many cases

$$
(1 - \varepsilon) \frac{\partial q}{\partial t} = -v \frac{\partial y}{\partial z}
$$

- initial condition

$$
t = 0
$$
, $z = 0$, $y = \left(\frac{M}{A}\right) \delta(z)$
all z, $q = 0$

- to solve these equation
	- if mass transfer is controlling

$$
(1 - \varepsilon) \frac{\partial q}{\partial t} = ka(y - y^*)
$$

- K = mass transfer coefficient
- a = packing area per bed volume
- y^* = concentration in solution at equilibrium

• if diffusion within pores is rate controlling

$$
(1 - \varepsilon) \frac{\partial q}{\partial t} = \sqrt{\frac{D}{t'}} a(y - y*)
$$

D = effective diffusion coefficient
t' = some characteristic time

• if reversible chemical reaction is rate controlling

$$
(1 - \varepsilon) \frac{\partial q}{\partial t} = ky = k' q
$$

k, k' = forward and reverse rate constants of this reaction

$$
l = \int_0^{\lambda} dz = \left[\frac{v}{ka}\right] \int_{y0}^{y} \frac{dy}{y - y^*}
$$

Number of transfer
units(NTU)
Height of a transfer unit(HTU)
 \therefore $l = HTU \cdot NTU$

 \overline{a}

$$
y = y_0 \exp\left(-\left(\frac{t/t_0 - 1}{\sqrt{2\sigma^2}}\right)^2\right)
$$

$$
= y_0 \exp\left(-\left(\frac{t/t_0 - 1}{\sqrt{2/NTU}}\right)^2\right)
$$

$$
NTU = \frac{1}{\sigma^2} = \frac{l}{HTU} = \frac{kal}{v}
$$

Bio process lab.

The concentration at the peak

,

$$
\int_{-\infty}^{\infty} yHdt = M
$$

The result

$$
y_0 = \frac{M/Ht_0}{\sqrt{2\pi (NTU)}} = \frac{M}{\left[\varepsilon + (1-\varepsilon)K \right]V B} \sqrt{\frac{kal}{v}} = \frac{M/A}{\left[\varepsilon + (1-\varepsilon)K\right]}\sqrt{\frac{ka}{lv}}
$$

$$
y = \left[\frac{M/A}{\left[\varepsilon + (1-\varepsilon)K\right]} \sqrt{\frac{ka}{lv}}\right] \exp\left(-\frac{kal}{2v} \left(\frac{t}{t_o} - 1\right)^2\right)
$$

$$
y = \left[\frac{M/A}{\left[\varepsilon + (1-\varepsilon)K\right]} \sqrt{\frac{ka}{lv}}\right] \exp\left(-\frac{kal}{2v} \left(\frac{V}{V_o} - 1\right)^2\right)
$$

h **Example Example**

⁴**Aspartame Isomer Separation**

Problem : Find the apparent rate constant *k* for this separation and compare these rate constants with those expected form the mass transfer correlation

$$
\frac{k}{v} = 1.17 \left(\frac{d v}{v}\right)^{-0.42} \left(\frac{v}{D}\right)^{-0.67}
$$
 d' : packing diameter
v : solvent velocity
v : kinematic viscosity
D' : diffusion coefficient
0.7×10⁻⁵ cm²/sec

Solution

$$
\frac{y}{y_0} = \exp\left(-\left(\frac{t/t_0 - 1}{\sqrt{2/NTU}}\right)^2\right)
$$

$$
= \exp\left(-\frac{(t-t_0)^2}{2t_0^2/NTU}\right)
$$

For the *d* aspartame

$$
\frac{t_0}{\sqrt{NTU}}
$$
 = Peak spread
\n
$$
\frac{62 \text{ min}}{\sqrt{NTU}}
$$
 = 3 min, NTU = 427
\nfor the *I* aspartame, NTU = 140

$$
k = N T U \left(\frac{v}{al}\right)
$$

The velocity under the conditions given

$$
v = \frac{H}{((\pi / 4)d^{2})}
$$

=
$$
\frac{2.0 \text{ cm}^{3} / 60 \text{ sec}}{[\pi / 4(0.41 \text{ cm})^{2}]}
$$

= 0.25 cm / sec

Therefore

 $a = 6(1-\epsilon)/d$ for the *d* aspartame

$$
k = \frac{427 (0.25 cm/sec)}{[6(0.62) / 45 \times 10^{-4} cm]25 cm}
$$

= 5.2 × 10⁻³ cm/sec

for the *l* aspartame, $k=1.7\times 10^{.3}$ *cm /sec*

The values for the mass transfer coefficient

$$
k = 1.17 \left(0.25 \frac{cm}{sec} \right) \left[\frac{0.01 \, cm^2 / sec}{45 \times 10^{-4} (0.25 \, cm / sec)} \right]^{0.42}
$$

$$
\times \left[\frac{0.7 \times 10^{-5} \, cm^2 / sec}{0.01 \, cm^2 / sec} \right]^{0.67} = 5.6 \times 10^{-3} \, cm / sec
$$

⁴**The Effects of Axial Dispersion**

Problem : For slow (laminar) flow in a long thin tube, the concentration profile of a pulse injected at $t = 0$ and $z = 0$ is given by

$$
y = \frac{M/(\pi/4)d^2}{\sqrt{4Et\pi}} \exp\left(-\frac{(z-tv)^2}{4Et}\right)
$$
 E: dispersion coefficient
D: solute's diffusion coefficient
0: velocity, t: time
z: tube length, z = l = vt₀
d: diameter

E : dispersion coefficient,
$$
E=v^2 d^2/192D
$$

D : solute's diffusion coefficient
v : velocity, t : time
z : tube length, $z = l = vt_0$
d : diameter

find NTU

Solution

rewriting

$$
z = l = v t_0
$$

$$
y = \frac{M/(\pi/4)d^2}{\sqrt{4Et\pi}} \exp\left(-\frac{tv^2}{4Et}\left(\frac{t}{t_0} - 1\right)^2\right)
$$

Using the expression for E

$$
y = 4.98 \frac{M}{d^3} \sqrt{\frac{D}{lv}} \exp\left(-\frac{48Dl}{d^2v} \left(\frac{t}{t_0} - 1\right)^2\right)
$$

$$
NTU = \frac{96\,Dl}{d^2v}
$$

Scaling up Chromatography Scaling up Chromatography

• Introduction

- - At the larger scale, we want a bigger capacity but with the same yield and purity
- To increase the capacity, we are able to increase the solute concentration in the feed and the flow through the column

$$
y = y_0 \exp\left(-\left(\frac{V}{V_0} - 1\right)^2 / 2\sigma^2\right)
$$

parameter : y $_{0}$, V/V $_{0}$, σ

• Changes in the standard deviation

$$
\sigma^2 = \frac{v}{kal}
$$

- it is a function of the velocity, column
length, rate constant d : sphere's diameter

rate constant k :

- solutepacking
- if the controlling step by diffusion and fast reaction within the particles

$$
k \propto \frac{1}{d} \implies \sigma^2 \propto \frac{d^2 v}{l}
$$

 if the controlling step by mass transfer between the bulk and the particle

$$
k \propto \left(\frac{v}{d}\right)^{1/2} \Rightarrow \sigma \propto \frac{v^{1/2} d^{3/2}}{l}
$$

• it may also change because of dispersion

$$
\sigma = \sqrt{\frac{2E}{lv}} \propto d \sqrt{\frac{v}{lD}}
$$

Table 7.5-1 Changes in the Standard Deviation

• Scale up the separation

- 4 Keep the ratio of packing diameter to column diameter
	- preserve the character of the flow in the packed bed
	- use larger, cheaper packing
- **► Fix d and increase both v and l at constant (v/l)**
	- at this case, the pressure drop can increase dramatically
	- because of small constant d, the pressure drop is already high
- \rightarrow use short fat columns
	- 0 υ and *l* used in the small scale separation
	- increased capacity is due to their greater cross sectional area

h **Example Example**

⁴**Fumarase Chromatography**

10g of the enzyme fumarase are being purified in an ion exchange column. At a velocity of 30cm/hr, the peak in concentration exits the column in 93min and the standard deviation of this peak is given as 12min

(a) how long must we purify for a 90% yield

$$
\frac{y}{y_0} = \exp\left(-\left(\frac{t/t_0 - 1}{\sqrt{2\sigma^2}}\right)^2\right) = \exp\left(-\frac{(t - 93 \text{ min})^2}{2(12 \text{ min})^2}\right)
$$

Thus $\sigma = 0.129$,

$$
yield = \frac{1}{2} + erf \frac{t - t_B}{\sqrt{2}t_B \sigma} \qquad 0.9 = 0.5 + erf \frac{t - 93}{\sqrt{2}93(0.129)}
$$

 $t = 115$ min

We must wait 115/93(-1.24) times longer then the peak time to get a 90% yield

(b) If we in crease the flow to 60cm/hr, how long must we run for this same yield if the process is controlled by diffusion and reaction?

> t_0 = 46.5min from Table 7.5-1

$$
\sigma = 0.129 \left[\frac{60}{30} \right]^{1/2} = 0.182
$$

t = 61.8 min2 46 .5(0.182) 46 .5 $0.9 = 0.5$ $= 0.5 + erf \frac{t-1}{\sqrt{t-1}}$

We must wait $61.8/46.5 (= 1.33)$ times the peak time to get a 90% yield

(c) How long must we wait if the process is controlled by mass transfer

> If the process is controlled by mass transfer,

 t_0 = 46.5mim σαυ1/4

$$
\sigma = 0.129 \left[\frac{60}{30} \right]^{1/4} = 0.153
$$

$$
0.9 = 0.5 + erf \frac{t - 46.5}{\sqrt{2}46.5(0.153)}
$$

t = 59.4 min

We must wait only 1.28 times the peak time for a 90% yield

(d) How long must we wait if Taylor dispersion controls?

```
If Taylor dispersion is rate 
controlling
```
 σ α $\upsilon^{1/2}$

The results are exactly the same as part(b)

(e) How long must we wait if the column actually contains equilibrium stages

Thus σ = 0.129

93 min 115 min 46.5min = *^t*

Thus *t* is 57.5min, 1.24 times the time for the peak

⁴**Transferrin Desalting**

A dilute feed in which 80% of the total solute is transferrin and 20 % behaves like sodium chloride is to be desalted on a dextran gel column. Operation the column at 10cm/hr gives the following results:

Problem : What is the maximum velocity and the time which will give a 99% yield of thransferrin which is 98% pure

Solution :

$$
\sigma = \frac{t_0 \sigma}{t_0} = a v^{1/2}
$$

\n
$$
\sigma(transferri n) = \frac{4 \text{ min}}{41 \text{ min}} = a \left(\frac{10cm}{hr}\right)^{1/2}
$$

\n
$$
a = 0.0309 \sqrt{hr/cm}
$$

\n
$$
\sigma(salt) = \frac{4 \text{ min}}{88 \text{ min}} = a \left(\frac{10cm}{hr}\right)^{1/2}
$$

\n
$$
a = 0.0144 \sqrt{hr/cm}
$$

\nsalt yield

$$
purity of i = \frac{y_0(i) yield(i)}{\sum_j y_0(i) yield(i)}
$$

$$
0.02 = \frac{(yield \ salt)(0.2)}{0.99(0.8)}
$$

yield *salt* = 0.08(8%)

$$
0.99 = \frac{1}{2} \left[1 + erf \frac{vt / ((10cm/hr)41min) - 1}{\sqrt{20.0309\sqrt{hr/cm}\sqrt{v}}} \right]
$$

$$
0.08 = \frac{1}{2} \left[1 + erf \frac{vt / ((10cm/hr)88min) - 1}{\sqrt{2} \cdot 0.0144\sqrt{hr/cm}\sqrt{v}} \right]
$$

$$
v = 93cm/hr
$$

$$
t = 7.4 min
$$