THERMODYNAMIC PROPERTIES IN THE SERVICE OF PROCESS SIMULATORS

J.P. O'Connell University of Virginia, USA and J.W. Kang, R. Gani CAPEC Technical University of Denmark

OBJECTIVES

Illustrate/Distinguish Service & Advice Roles of Properties in Simulation & Design

Suggest How to Make Properties in Service

Efficient Fast, minimum input, automated

Flexible Usable in several process applications Robust Results reliable for multiple problems

WHY PROPERTIES MODELING?

Competitive Manufacturing Requires New/Replacement Processes, Products Economic Efficiency in Time, Effort, Investment

Process Simulators

Allow maximum exploration/optimization Solve equipment units with <u>Process Models</u> of Constraint equations (Material/Energy/Fugacity) Thermo Variables are Conceptuals $(h, \phi_v, \gamma_v, ...)$ Need <u>Data & Property Models</u> to relate Conceptuals to System/Substance <u>Measurables</u> $(T, P, \{x\}, ...)$

USES OF PROPERTY MODELS

Have Process simulation & System design problems

SERVICE TOOLS FOR PROPERTY PROBLEMS

SERVICE CASES DEPEND UPON KNOWN INFORMATION (DATA/PARAMETERS)

ISSUES FOR SERVICE MODELS

Large model libraries may be needed

Increases application range Causes model selection/validation uncertainties Requires many data/parameters

Generalized models may be

- Computationally expensive Unnecessarily complex, especially derivatives
- **Efficiency/reliability improvements** Simpler models with tuned parameters generated on-line & validated Sensitivity analysis of parameters

EXAMPLE: CO₂ & ACRYLIC ACID

VLE separation feasibility & conditions? Limited pure component, binary data available

Model selection suggests EoS, specifically SAFT Corresponding states form, no binary parameter But takes large computational resources

Questions:

Use directly or to set up simpler model? What is efficient procedure to generate model?

SAFT REFERENCE; SRK APPLICATION

VLE data from SAFT, use to fit SRK k_{12} – fast/reliable

			1 🖬		
TML - [C:\CAPEC\ICAS\work\ICAS1.in]					
	✓ Help	<i>Values passed</i> to			
Compounds	Property Estimat	ion Toolbox version	Database, Paramet	er	
TMS	Selected compounds		library for use in		
່ມະອີຍັດ Run TMS - ເບັ້ມ Thermodynamic Model ທີ່ຜູ້ Gamma-PhiApproach ທີ່ຫຼີ Phi-PhiApproach	No Name 1. acrylic-acid 2. CARBON-DIOXIDE	Formula CASNO Database C3H4O2 000079-10-7 user.mdb CO2 000124-38-9 user.mdb	other applications		
Additional Mixture Properties	Phase Equilibrium Model Selected	Results		P	
Help	Ennetion of state - Result Berlink Kurgen [5]	Regression Successful			
?			P-x-y Plot		
Thermo Model Soave-Redlich-Kwong w. kij	Data Set Manager Data Set 1: SubSet = All Compounds Implement of the procession Set Scaling factors	Data Set Data Set 1 : SubSet = All Compounds	110 100 yexp(1) = Red xexp(1) = Red xexp(1) = Red	ł l	
Define Objective Function for Active Data Set Weightings Activity coefficient Relative Y Define Weights Vapor priase comp. Absolute Y Define Weights	P(Bar) T(K) x(1) x(2) 1 88.7000 320.00 0.0360 0.9640 2 88.9000 320.00 0.06520 0.9480 3 90.5000 320.00 0.06520 0.9390	C T-xy Plot C P-xy Plot C Excess Energies	90 y(1) = Green x(1) = Green 80 y	n n	
Liquid prese comp. Absolute Ø Delme Weights Temperature Relative Ø Delme Weights Pressure Relative Ø Delme Weights Excess entheligy Relative Ø Delme Weights	4 90,1000 320,00 0.0800 0.9200 5 88,6000 320,00 0.1140 0.8860 6 88,2000 320,00 0.1170 0.8830 7 87,6000 320,00 0.1560 0.8440 8 85,9000 320,00 0.1600 0.9400	Regressed Parameters Value Unit kij (C3H402/C02) -0.01002727099257 0.01002727099257			
Info Pure Vapor Pressure Correlations Selected correlation Mixed correlations for alpha functions	3 35.7000 320.00 0.2110 0.789 10 79.4000 320.00 0.2610 0.739 11 68.9000 320.00 0.4410 0.5590 12 45.2000 320.00 0.8910 0.3090 13 28.1000 320.00 0.8160 0.1840	<u>ن</u> ط	40		
View Parameters/Select New Correlation		See the output file for more details View	30		
Database Save Parameters	Selective Regression Import Data Delete Data Set <back main<="" td="" to=""> No regression>> Next></back>	- Graph Control		6. D	
Connell, Kan	g & Gani 🌌	Finish	×(1), y(1)		

CASE: PARAMETERS UNKNOWN

SERVICE TOOLS FOR PROPERTY PROBLEMS

EXAMPLE: H₂O/ KCI/EtOH/Ampicillin

Effect of ethanol on solubility of ampicillin Limited pure/binary/ternary SLE data available Speciation identified

Model selection suggests Electrolyte NRTL Most binary parameters known

Questions: Procedure of greatest efficiency? Minimum parameters to be fitted?

SYSTEM DEFINITION & PROPERTIES

Comp.		Name	Phase	Ion type	Salt type	Other
No.						spec.
1		H2O	Vapor / solvent	-		
2	A	Ampicillin	Liquid / solid	Dipole	Organic	
3		KCl	Solid	-	Inorganic	
4		EtOH	Vapor / solvent	-		
5		H+	Liquid	Cation		
6		OH-	Liquid	Anion		
7	A	mpicillin+	Liquid	Cation		
8	A	Ampicillin-	Liquid	Anion		
9		K+	Liquid	Cation		
10		Cl-	Liquid	Anion		
Properties name		rties name	SLE	Models		
Pure		Bor	n radius	*	Data	
Properties		Density		*	Racket	
Dielectr		ric constant	*	Correlation		
Mixture Activity		/ coefficient	*	electrolyte		
Properties				NRTL		
	Solubility		lubility	*	Solubility	
		-			pro	duct

CAPEC

DETERMINATION OF PARAMETER SENSITIVITY

Evaluate sensitivities from

$$\frac{dF}{d\tau_{k}} = \sum_{j=1}^{NEXP} \frac{dF_{j}}{d\tau_{k}} = \sum_{j=1}^{NEXP} \frac{d(\sum_{i=1}^{N_{p}} |(p_{i}^{cal} - p_{i}^{exp})/p_{i}^{exp}|)_{j}}{d\tau_{k}}$$

F= function, p = property value, τ = parameter

Fit only parameters k with large $dF/d\tau_k$

SERVICE DIFFERS FROM ADVICE IN TARGET/KNOWN INFORMATION

Forward Problems (Service Role)

- Select Appropriate Model
- Tune/Re-estimate Model Form/Parameters
- Simplify Model When Possible with Accuracy
- Compute Properties & Derivatives

O'Connell, Kang & Gani

<u>Automate?</u>

<u>Reverse Problems</u> (<u>Advice Role</u>)

- Select Appropriate Properties & Models
- Estimate Model Parameters
- Compute Properties
- Validate (Data, Theory, Microsimulation)
- Select "Best" System

Must use general models for multiple properties Data/parameters often unavailable Unknown accuracy/reliability

Efficiency improved with Strategy for obtaining information Experiment/Theory/Microsimulation On-line model generation/validation

Reliability better via sensitivity-analysis/validation

Some, but not all steps same as service role

MODEL GENERATORS MAY NOT MATCH SERVICE OR ADVICE USER NEEDS

Provide limited testing

Systems – Known substances Properties – Standard EoS, *G^E* Weak Validation – Consistency, limits, multiproperty

Give inefficient formulation

Theoretical basis without computational strategy Excessive # of parameters Complex expressions, especially derivatives

Result often correlation with limited prediction

FUTURE PROSPECTS

Properties strategy separate from process simulation? Advice problem does process once with target then iteratively finds substances/states

Algorithms for advanced systems need to treat Simultaneous reactions/mass & heat transfer

Education of generators/users on roles of Properties & models Products of model generators Implementation by model users

CONCLUSIONS

Service & Advice roles exist for properties Differences in objective, model usage & input

Careful strategies can meet goals to Maximize productivity Reduce uncertainty Elucidate sensitivity Allow "machines to work & people to think"

