

Property Integration for Simultaneous Process and Product Design

Mario R. Eden, Peter M. Harper, Sten B. Jørgensen, Rafiqul Gani

Computer Aided Process Engineering Center (CAPEC) Department of Chemical Engineering Technical University of Denmark

Ian M. Glasgow, Mahmoud M. El-Halwagi Chemical Engineering Department Auburn University

Outline

- Introduction and Motivation
- Process Design vs. Molecular Design
- Simultaneous Process and Molecular Design
- Motivating Example
- Concepts of Property Clustering
- General Problem Statement
- General Problem Representation
- Minimum Flow Solution Methodology
- •Case Study: VOC Recovery
- \bullet Conclusions

Introduction and Motivation 1:2

- • Conventional Process Design Paradigm
	- katalog katalog a Tracking individual chemical species through balances.
	- – Nature and quantity of chemical constituents needed for characterization and design of chemical processes.
	- Requires enumeration of all constituents.

Introduction and Motivation 2:2

- • New Design Paradigm of Property Integration
	- katalog katalog a Many design problems are not componen^t dependent.
	- – Driven by properties or functionality of the streams and not their chemical constituency.
	- Only requires tracking of properties NOT chemical species.

Process Design vs. Molecular Design

Simultaneous Process and Molecular Design

Motivating Example: VOC Recovery

Concepts of Property Clustering 1:3

C2

1

• Definition of Property-based Clusters

Properties

μ

 $\bf C$

 $\boldsymbol{\mathrm{p}}$

ρ

– Surrogate properties which allow the tracking of unconserved raw properties. They are obtained by mapping raw properties into an equi-dimensional domain. The clusters are tailored to have the attractive features of intrastream and inter-stream (mixing/splitting) conservation. For visualization purposes ^a maximum of three property clusters is used. **C**

C

3

Concepts of Property Clustering 2:3

•

Property Opera
\n- It is assume
\ndescribed by a
\n
$$
\frac{1}{\rho} = \sum_{s=1}^{N_s} \frac{x_s}{\rho_s} \text{ thus } \psi(\overline{\rho}) = \frac{1}{\rho} , \psi(\rho_s) = \frac{1}{\rho_s} \text{ be}
$$
\n
$$
\psi_i(\overline{p}_i) = \sum_{s=1}^{N_s} x_s \cdot \psi_i(p_{i,s}) \text{ , where } x_s = \frac{F_s}{\sum_{s=1}^{N_s} F_s}
$$

– By dividing by an arbitrary reference value the operators are made dimensionless. The summation of the dimensionless operators define the AUgmented Property index.

=

$$
\Omega_{i,s} = \frac{\psi_i(p_{i,s})}{\psi_i^{\text{ref}}} \hspace{1cm}\text{and}\hspace{1cm} \text{AUP}_s = \sum_{i=1}^{N_C} \Omega_{i,s}
$$

Concepts of Property Clustering 3:3

 $C₂$

•Cluster Definition

> –Full derivation, Shelley & El-Halwagi (2000)

si,s $^{\rm i,s}$ $\overline{\rm AUP}$ $\bf C$ Ω

– Intra-stream and inter-stream conservation.

General Problem Statement

•Given

- Process sources with known **properties**.
- Process sinks with constraints on their feed **properties**.
- <u>– Liberator Angelski, politik a po</u> Interception techniques, which can alter property values.

•Desired

 Process objectives of optimum allocation, recovery, and interception.

General Problem Representation

Minimum Flow Solution Methodology

Case Study: VOC Recovery 1:9

Case Study: VOC Recovery 2:9

•Experimental Data

– katalog katalog a Property values are available for the off-gas condensate as ^a function of condensation temperature at 2 atm.

Case Study: VOC Recovery 3:9

•Sink Constraints

- • Solution Objectives
	- Minimize flowrate of fresh organic solvent
	- Synthesize single componen^t solvent for each unit

Case Study: VOC Recovery 4:9

Case Study: VOC Recovery 5:9

C1 C_3 **C 2 Rup** 0.8 0.6 0.4 0.2 \mathcal{O}^{\bullet} 6^{0} $\widetilde{\mathcal{C}}$ $\frac{2}{\sqrt{2}}$ $\mathcal{O}_{\mathbf{\hat{o}}}$ ං
ග $\frac{1}{\alpha}$ \circ 280K 285K 290K 295K 300K 305K 310K \mathfrak{S}° ζ 315K **Flowrights** 10.0 20.0 $\frac{1}{20}$. **DEGREASER DEGREASER ABSORBERCONDENSATION** $\mathcal{F}_{\mathit{f}_\mathit{I\!P\mathit{S}\mathit{f}_\mathit{I}}} \approx$ 6.6 kg/min F_{resh, min = 7.1}
Kg/min Feasible Mixing Paths at 280K **Results Obtained for Degreaser at 280 K** Target flowrate of fresh: 6.6 kg/min Minimum feasible flowrate of fresh: 11.8 kg/min

Case Study: VOC Recovery 6:9

C1C 3 C 2 AU 0.8 0.6 0.4 0.2 0.2 \circ 0.6 $\widetilde{\rho}_{\check{\alpha}}$ $\frac{2}{\sqrt{2}}$ ි. ္တိ $\frac{Q}{\mathbf{Y}}$ $\ddot{\circ}$ 280K285K 290K295K 300K 305K310K $\mathfrak{S}^{\mathfrak{S}}$ 50° 315K **Flowrights** 10.0 20.0 $\frac{1}{20}$. $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ **DEGREASER DEGREASER ABSORBER CONDENSATION** $\mathcal{F}_{\mathit{r_{\text{es}}}}$ 6.6 kg/min F_{resh, min = 7.1} kg/min Feasible Mixing Paths at 285K **Results Obtained for Degreaser at 285 K** Target flowrate of fresh: 7.1 kg/min Minimum feasible flowrate of fresh: 7.1 kg/min

Case Study: VOC Recovery 7:9

- • Reducing the Solution Space of the CAMD Problems
	- No phenols, amines, amides or polyfunctional compounds.
	- No compounds containing double/triple bonds.
	- No compounds containing silicon, fluorine, chlorine, bromine, iodine and sulfur.
- \bullet Property Constraints

Case Study: VOC Recovery 8:9

•Solving CAMD Problem

- **ProCAMD, CAPEC (2001)**
- **Algorithm, Harper (2000)**

Case Study: VOC Recovery 9:9

Conclusions

•Property Integration

- –New paradigm for integrated design of processes.
- – Property Interception Network provides property-based representation of the system.
- –Visualization provides insights to solving overall problem.
- Simultaneous Process and Molecular Design
	- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of $\mathcal{L}_{\mathcal{A}}$ Identifies property values corresponding to optimum process performance without committing to components.
	- Property values are then used for molecular design yielding the corresponding components.
	- Usefulness demonstrated by case study.

Further Information

Mario Richard Eden

Email: mre@kt.dtu.dk