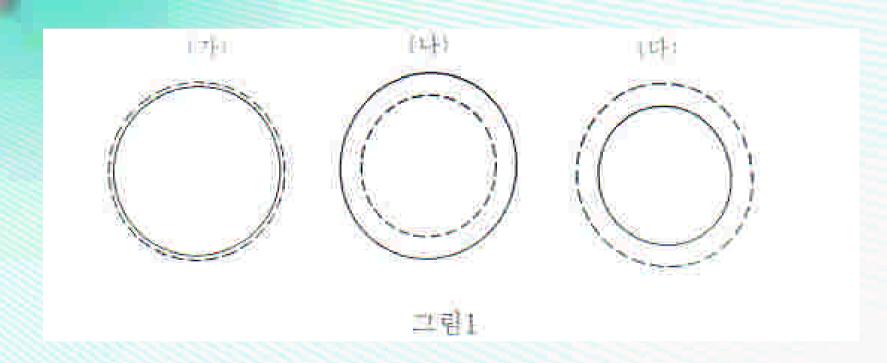


목 차

- I. 특허의 중요성
- L. 발명/특허청구범위
- L 나노기술의 특징
- I. NT 특허동향
- L 고분자나노특허동향
- I. 결론


미래의 생존전략: 특허

- 삼성SDI와 일본 후지쓰의 플라스마 디스플레이 패널(PDP) 관련 특 허분쟁에서 보듯이 디지털 전자산업 등을 중심으로 원천특허를 보 유한 선진국들의 특허공세가 강화되고 있다.
- 그러나 국내기업들은 특허공세에 대비한 원천특허나 대응특허가 부족한 것이 현실이다. 이로 인해 매년 20억달러 이상의 기술무역 수지 적자를 내고 있다.

신기술

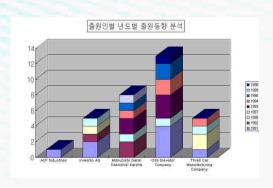
공공이 갖는 기술적 자산과 특허권

침해유형(권리범위)

특허발명

$$A + B + C$$

비교대상 발명

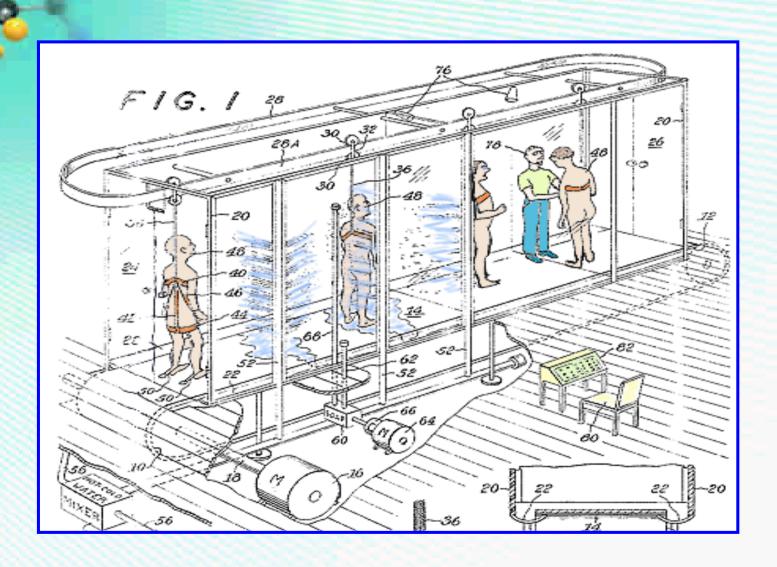

$$A + B + C$$
 $A + B + C$
 $A + B + C + D$
 $A + B + C' + D$
 $A + B$
 $a + B + C$

VS

특허보호전략

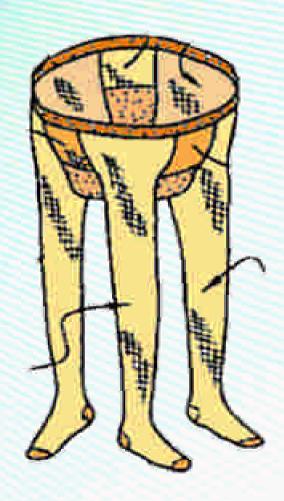
- · 전자업계 특허분쟁 크로스 라이센스로 해결
- · 제품출시보다 특허출원이 우선
- 기업의 지적재산권 관리체제 구축
 - 지적재산권에 대한 사내 인식 제고
 - 전담부서 설치와 전문요원 양성
 - 자사의 특허기술분석, 경쟁기업의 특허활동 감시(경쟁사의 특허등록을 저지시키고 무효화시키기 위해 노력), 미래의 분쟁가능성 대비, 연구개발 의 방향 제시 등
- · 기술개발활동의 촉진과 적극적인 권리화
- · 특허정보의 적절한 활용, 특허맵

발명은 아이디어다



발명의 의의

- 발명은 아이디어다
 - 착상만으로 발명이 되는 것은 아니다
- 원리의 발견 그 자체만으로 발명이 되지 않는다
- 구체화하고 실현가능하도록 하여야 한다
- 형성과정
 - 발상/기술적 착상/기술적 구성/실증에 의한 효과확인/발명완성



미국특허(자동 세척기?)

미국특허(US 5,713,081)

Dog Watch

부자발명 가난한발명

- 재주는 곰이 부리고 돈은 다른 사람이 번다
- 애쓴 사람 따로, 덕보는 사람 따로
- 뿌린 만큼 거둔다는 말은 종종 삶을 속인다

발명(연구개발)하는 것 보다는 특허출원(명세서작성)이 우선

특허 출원명세서

- 명세서의 의의 : 그 발명이 속하는 기술 분야에서 통 상의 지식을 가진 자, 즉 당업자가 그 발명을 실시할 수 있을 정도로
 - 1. 기술적 내용이 명확하고도 충분히 기재되어야 함 과 동시에
 - 2. 출원인이 특허받으려고 하는 권리가 어떠한 범위 인가를 제3자가 명확히 파악할 수 있을 정도로 기 재되어야 한다.

명세서 작성방법 및 실제

- 발명의 명칭
 - ✓ 폴리에스테르필름의 제조방법(0)
 - ✓ 홍길동식 폴리에스테르 필름(X)
 - ✓ 발명특허 000 (X)
- 도면의 간단한 설명
- 발명의 상세한 설명
- [1] 목적
- (2) 발명이 속하는 기술분야 및 그 분야의 종래기술
- (3) 발명이 이루고자 하는 기술적 과제
- [4] 구성
- (5) 실시예
- (6) 효과
- 특허청구범위

특허법 제2조/청구범위 작성

- 발명이란 자연법칙을 이용한 기술적 사상의 창작으로 서 고도한 것을 말한다
- 보호되는 사항은 제품자체(기술)는 물론이고 이 제품 이 가지고 있는 사상까지를 말한다
- 기술적 사상을 문언으로 표현하는 것으로 표현이 어려운 점이 많다
- 상세한 설명 = ? 특허청구범위

특허청구범위의 성격

- 출원인이 특허권으로서 권리를 확보하고자 요망하는 범위
- 출원발명이 특허된 경우에 특허권의 내용은 특허청구 범위에 기재된 사항에 기초하여 정해진다
- 특허를 받고자 하는 발명의 내용을 특정하여 기재

특징추출형 특허청구범위

- 청구항 1. A와 B를 반응시켜 C를 제조함에 있어서,
 - (1) 촉매 X를 사용하는 것
 - (2) 용매로서 D를 사용하는 것
 - (3) 반응온도를 100~200oC, 반응압력을 50~70 기압으로 하는 것을 특징으로 하는 C의 제조방법

[발명의 명칭] 회전 궤도 인공 위성

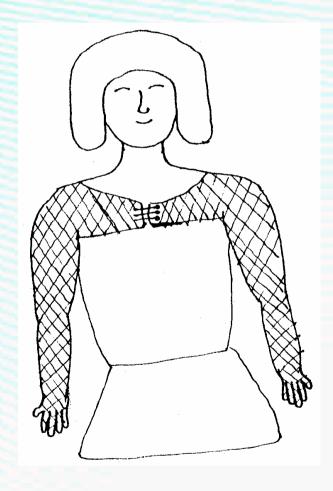
[특허청구범위]

청구항 1. 지구상의 일정 궤도를 회전하는 인공 위성에 있어서, 서울 상공을 기점으로 하여, 베링해협-캐나다 에드먼턴-미합중국 뉴올리언스-파나마-부에노스아이레스-사우스조지아-자카르타 상공을 경유하여 다시 서울 상공으로 이어지는 궤도를 따라 회전하는 것을 특징으로 하는 회전 궤도 인공 위성.

청구항 2. 제1항에 있어서, 상기 인공 위성은 지상으로부터 약 9600km 내지 약 19200km의 상공을 회전하고, 그 회전 주기는 약 5시간 내지 약 12시간이 되는 것을 특징으로 하는 회전 궤도 인공 위성.

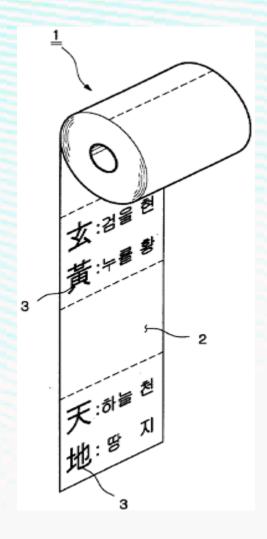


[발명의 명칭] 된장수


- 본 제품은 여름이나 운동후 땀을 많이 흘린 후에나 갈증해소에 좋으며 남녀노소 필수적으로 섭취해야 할 요소들로 구성해 만들어졌으며, 영양 상 어떤 음료수에 비해도 손색이 없는 우리나라 특유의 토속적인 음료수 로 각광을 받고자 함. 그리고 아직도 밝혀지지 않는 매주의 신비성을 된 장음료수로 세계에 보급하고자 함
- 청구항 1. 기존의 음료수는 당도가 높고 화학적인 음료수가 많은 반면 본 제품은 순수자연식품을 이용해서 만들어진 음료수이며 외식입맛에 길들여진 요즘, 그 점에 변화를 주고 건강상 유익한 점을 들어 고안했음.

[발명의 명칭] 팔 스타킹

청구항 1. 손가락 또는 손목에서 팔꿈치 또는 어깨까지 미용 또는 보온을 목적으로 착용 하는 것을 특징으로 하는 팔 스타킹



[발명의 명칭] 천자문이 인쇄된 화장지

[특허청구범위]

청구항 1. 롤 형태의 두루말이 화장지(1)에 있어서, 상기 두루말이 화장지(1)에 권취되어 있는 화장 지(2) 표면에 천자문과 같은 문자(3)를 인쇄하여 학습할 수 있도록 한 것을 특징으로 하는 천자 문이 인쇄된 화장지

[발명의 명칭] 열수축 폴리에스테르 필름

• 청구항 1. 공중합성분을 포함하고, 열수축에 의해 밀도가 감소하는 열수축 폴리에스테르 필름이며, 또한 2차 전이가 이상적으로 종료된 때 동적 점탄성 측정에 의해 얻어지는 인장저장탄성율 E'가 1.00×105(dyne/cm²) 이상인 열수축 폴리에스테르 필름

[발명의 명칭] 고분자 조성물

- 청구항 1. 고분자 엘라스토머에, 그 유리전이점 Tg 전후에서 가역전으로 색조가 변화하는 발색성 화합물을 혼입시켜서 이루어진 것을 특징으로 하는 고분자 엘라스토머 조성물.
- 청구항 1. 나일론 95~40중량부, 폴리프로필렌 5~60중량부, 및 일반식 (I)의 폴리에틸렌계 아이오노머 0.1~20중량부로 이루어진 나일론계 고 강도 다성분 고분자 조성물.

[발명의 명칭] 악행을 선행으로 전환 활용하므로 법의 보호와 권장하에 행할 사기방법

- 청구항 1. 능력있는 입후보자나 사업가등이 본래 성취하려는 목적을 숨기고 유권자 장래고객이 될 생산자와 상품 소비자를 유인할 미끼로써 중요정보제공 및 고충·난제 해결책, 유료 또는 무료 강좌를 여는 속이기 방법이나 약속한 정보제공과 고충과 난 제해결책을 명쾌히 제시 했다면 목적이 어디에 있던 법적인 하자가 없고 오히려 유 권자나 장래 고객으로부터 능력을 인정받아 신임을 얻음으로써 무일푼으로도 입후 보자는 정치자금 확보와 함께 당선의 영광을 얻고 역량있는 사업가는 무일푼으로도 생산자 거래선과 소비고객을 동시에 확보 할수 있어 사업에 성공할 수 있는 방법.
- 청구항 3. 독학으로 없었던 학설, 이론, 원리, 법칙, 진리를 완성했으나 학력, 경력 등의 조건때문에 인정받지 못해 연구 결과가 사장될 위기 때에 적용하는 방법으로 고인이 된 은사 또는 유명인사의 이름을 인용 그 분이 오랬동안 연구하다 마무리 짓지못하고 그 분이 가르쳐준 방법에 의하여 못다한 마무리 작업을 완성한 것이라 속이거나 유사한 방법으로 속여 발표하므로써 그 분야의 학자들이 정설인지 연구하게 되고 정설로 인정될 경우 새 학설이 정착되고 지금까지 잘못 알려진 학설이나 법칙, 진리 등으로 인하여 사회악이 되어온 원리와 그를 이용해온 악의 집단만 치명타를 입을 뿐 이름을 도용당한 분의 명성은 더욱 높아지며 그 원리 법칙과 진리는 온인류가 예택을 입게되는 방법.
- 청구항 4. 기타 악행으로 이용되어온 모든 사기 방법을 선행으로 활용하는 사기 방법

Nanotechnology (나노기술)

To be patentable your invention must;

- Be new
- Involve an inventive step
- Be capable of industrial application

Invention in Nano World ?

[발명의 명칭] 나노기술

청구항 1. 나노기술

청구항 1. 나노크기의 열경화성 고분자

청구항 1. 나노란 단어가 포함된 모든 것

[발명의 명칭] 나노입자 잉크

및 액체 비히클(vehicle)을 포함하는

제1항에 있어서, 상기 착색제 층이 입자 주형 상에 실질적으로 균일하게 배치되는 기록 매

제1항에 있어서, 상기 착색제 층이 입자 주형을 실질적으로 피복하는 기록 매체.

제1항에 있어서, 상기 착색제 층이 기능성 첨가제를 추가로 포함하는 기록 매체

l 기능성 첨가제가 전하 캐리어, 열 산화 안정제, 점탄성 개질제, 가교 유동성 조절제, 충전제, 계면활성제, 킬레이트제, 류코 염료 또는 이 기록 매체. 결합제, 가소제, 전하 조절제, 들의 혼합물로부터 선택되는

제1항에 있어서, 상기 입자 주형이 약 1,000 나노미터 미만의 평균 크기를 갖는 기록 매

청구항 13. 제1항에 있어서, 상기 입자 주형이 약 50 나노미터 미만의 평균 크기를 갖는 기록 매체.

[발명의 명칭] 나노입자 잉크

(11) 공개번호

(43) 공개임자

手2003-0048416

2003년06월19일

(19)대한민국특허청(KR) (12) 공개특허공보(A)

(51) , Int. CL7 B41M 5/00

(21) 국민민호 10~2003~7004640 (22) 출판일자 2005년04 월01일 반역문 파물인자 2003년04 월01일

(86) 국제출원반호 PCT/US2001/42433 (87) 국제국개반호 WO 2002/28660 (86) 국제군원호원회 2001년10월02일 (87) 국제군개일자 2002년04월11일

(81) 지정국

국내복형: 알바니아, 아르메니아, 오스트리아, 오스트래인리아, 아케르바이판, 보스니아-배플레고비나, 파메이도스, 불가리아, 브라킹, 텔라투스, 캐나라, 스와스, 중국, 쿠바, 체조, 독일, 테마크, 레스토디아, 스케인, 캠레드, 영국, 그루지아, 링가리, 이스라엘, 아이슬랜드, 일본, 케나, 티르기드, 특한, 대한민국, 키자오스탄, 페인보투시아, 스테랑카, 라이베리아, 레소도, 리부아니아, 호텔부드크, 라르비아, 용도바, 바다가스파크, 아케도니아, 몽고, 델링 및, 베시고, 노트웨어, 뉴팅랜드, 슬로메니아, 슬로바키아, 라지키스면, 부르크네니스탄, 터 이키, 트리니다드트메고, 우그라이나, 우건다, 우스베이스탄, 베르널, 볼란드, 포트루캡, 루 마니아, 테시아, 수단, 스웨션, 생기포르, 아랍에이라트, 안티구아바부리, 코스타리카, 도디 니카인부, 알케리, 모르고, 탄자니아, 탑아프리카, 뱅티즈, 오르마르, 베리앤, 프트아티아, 갈비아, 카니, 그래나다, 콜롬비아, 인도, 인도네시아, 시에라라은, 유고슬라비 아, 핑마브웨.

AP ARIPO특히: 에나, 레소토, 탈라위, 수단, 스의질센드, 우간다, 시에라다운, 가나, 라이 아! 집바브웨, 모참대크, 탄자니아.

EA 유타시아득히: 아트메니아, 아메르미이깐, 멜라투스, 카크기즈, 와자立스턴, 돌도바, 리 시아, 마지키스턴, 투로크메니스턴,

[만 유럽특히: 오스트리아, 캠키에, 스위스, 독일, 캔마크, 스페인, 트랜스, 영국, 그리스, 아 일랜드, 이탈리아, 목생부르크, 보다코, 세념만드, 포르투칼, 스웨덴, 관랜드, 사이프리스, 넘어리

OA OAP[특히: 부르키니파소, 배팅, 군안하브리카, 콩고, 코트디브와르, 카베운, 가똣, 기내, 발리, 모리타니, 니케르, 세네란, 파드, 토고, 기배비쏘, 색도기네.

(30) 至台南至五

60/237.142

2000년10월02월

미국(US) 미국(US)

(71) 書 他组

합병리=클라크 원드하이트, 인크

미국 54056 위스콘진주 나나 눈쓰 헤어크 스트리트 401

(72) 101 1

노력,포탈드,정활제이

미국30022조지아주말과레티네스및웨이크스트리아#8955

청구항 170항

1. 프린트방법용 기록매체: 49항

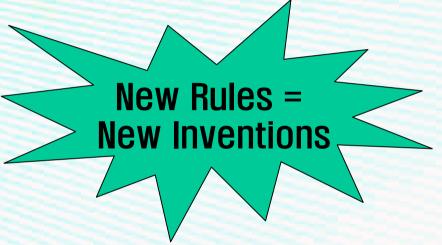
2. 기록 매체로 프린트한 직물: 2항

3. 프린트 방법: 7항

4. 기록 매체의 제조방법: 8항

5. 나노입자: 49항

6. 나노입자의 제조방법: 51항


7. 표면개질 잉크젯 잉크: 2항

8. 표면개질 잉크젯 잉크의 제조방법: 2항

Nanotechnology Patenting

- Nanotechnology represents confluence of sciences
- Chemistry
- ✓ Physics/Electronics
- Materials
- ✓ Bio/Pharma

- Challenge of Patenting in Nanotechnology
- ✓ What is it?

나노특허의 특징

Broad patent rights granted for Pioneering inventions

- ✓ New Rule: ヨ기(Size)
- ✓ 원천기술을 바탕으로 한 미래에 대한 가능성까지

There are many nanotech patents with overlapping claims

✓ 다학제간 학문/광범위한 영역

Patent become valuable when they cover commerical products

✓ 증가하고 있는 투자비와 시장성

NanoPatent (Definition)

- Developed at critical length scale of matter, typically under 100 nanometers
 - Manipulation, processing and fabrication under control of the nanoscale structures
- Novel properties and phenomena
 - Special effects, are attributed to and are intrinsic at the nanoscale
- USPTO Class 977

특허출원시 유의점(제도)

- 우선권 주장제도 : 조약우선권 (제54조)
 - 기간 : 국내 출원일로부터 1년 이내에 외국 출원
 - 효과: 특허요건 (제29조 & 제36조) 판단시점이 국내 출원일로 소급

• 공지예외주장

- 요건 : 시험, 간행물 발표, 연구집회 서면발표 또는 박람회 출품
- · 절차 : 6개월 이내에 출원, 출원서에 그 취지 기재 & 30일 이내에 증빙서류 제출
- · 효과: 출원일 소급 X, 신규성을 상실하지 않은 것으로 간주
- Publications
- Technology & Law

특허출원시 유의점(명세서)

- 정확하고 분명한 선행기술조사 필요
 - Keyword + IPC Search
 - 선두기업(또는 출원인)에 대한 집중적인 Claim 분석요망
- 나노크기로 인한 기술적 의의, 이로 인한 새로운 변화를 입증
 - · 사용용어(예를 들면, Nanocrystal)에 대한 정의를 명확하게
- · 단순한 재료의 치환이 아니라, 이에 대한 곤란성을 명확하게
- · 개척발명인 경우는 광범위한 Claim, 다수의 Claim, 다양한 Claim
- · 개량발명인 경우에는 선행기술과의 차이점을 분명하게 기재
- · 다양한 산업(응용)분야로의 기술전개방향을 예측
 - Quantum Dots (both semiconductor and tagging biological materials)
- 원천기술를 중심으로 광범위하고 지속적인 특허전략(~300개)
 - Hyperion Catalysis International (~83개)
- 공동연구에 대한 권리명확화 필요

NT Patents Analysis Project

Governments (MOCIE, MOST, KIPO)

Patent Information & Analysis (KIPI)

T/F Team for Nano-Patent Analysis (6 months) 7 experts in Nanotechnology Fields (R&D)

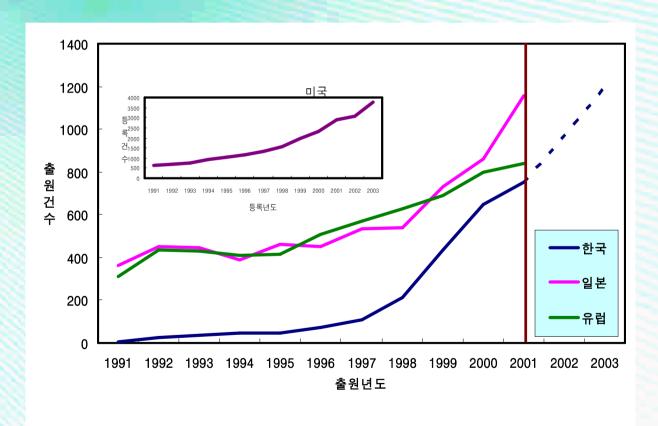
- Quantitative and Qualitative Analysis in Korea and Foreign Countries.
- Trying to improve the efficiency of government-funded R&D.
 - ✓ An indicator for planning and evaluating government-funded R&D projects

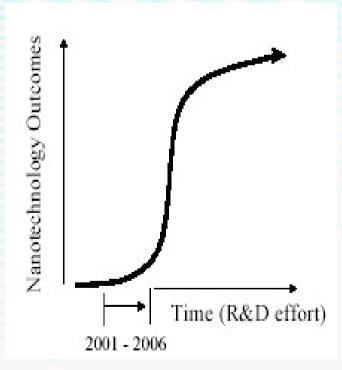
NT 특허분석을 위한 기술분류체계

- ◆ 나노전자소자
- ◆ 나노정보저장
- ◆ 나노광소자

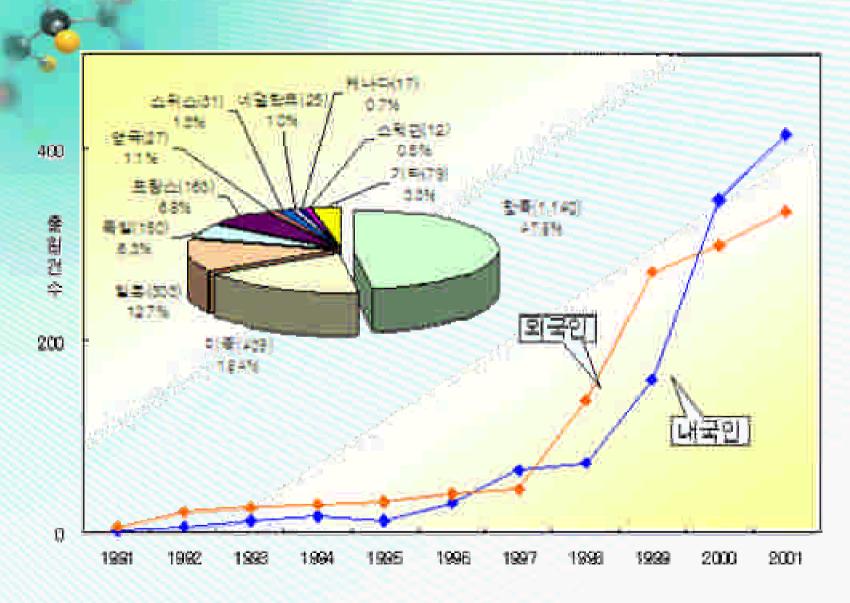
- 나노분말소재
- ◆ 고기능 소재
- ◆ 전자응용소재
- ◆ 촉매·기공소재
- ◆ 환경·에너지 ◆ 소재

- ◆ 나노바이오 · 보건물질
- ◆ 의약·약물 전달시스템
- ◆ 분석 · 진단 · 치료


- ◆ 나노측정· 조작기술
- ◆ 나노물리· 화학공정
- ◆ 나노패터닝공정
- ◆ 나노전산모사

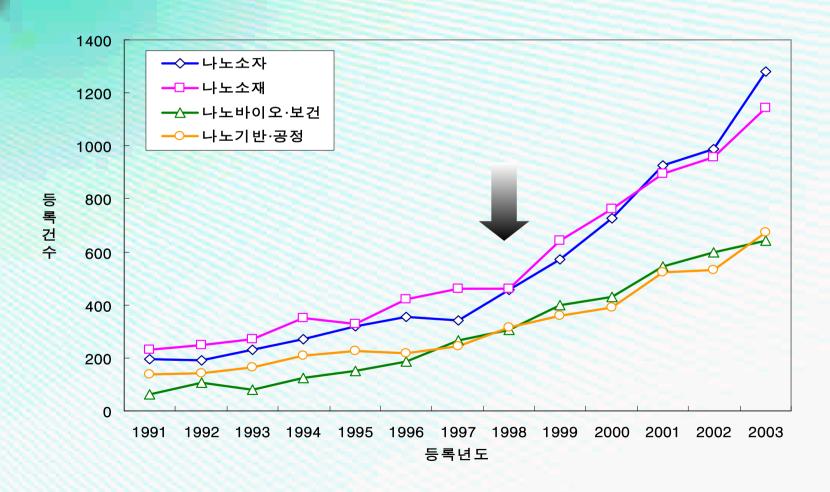

* 특허청 연구사업결과 NT특허분석보고서, 2004

전세계 주요국의 연도별 특허출원(등록) 현황

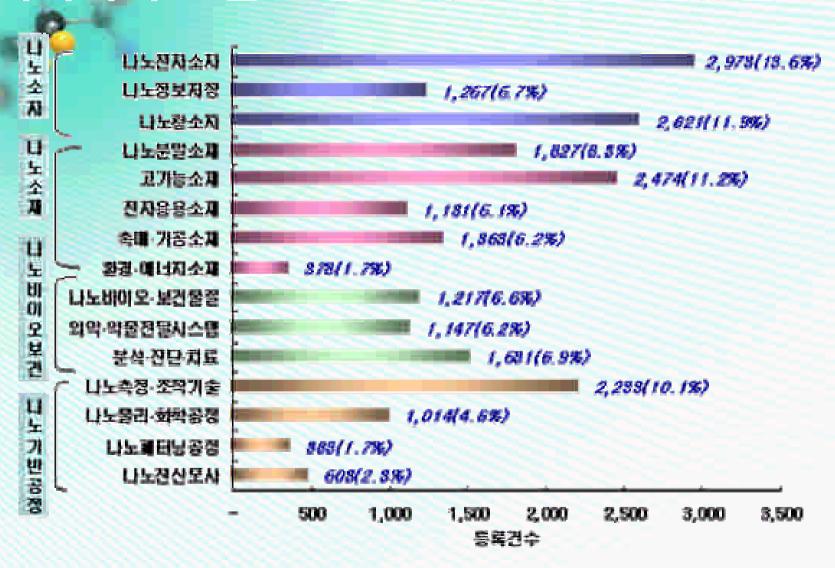

- NT분야 특허 출원/등록건수는 지속적으로 증가
 - 특히 '90년대 후반 이후 급증
- Mihail C.Roco박사는 NT분야 R&D성과의 생산이 2006년 이후 급증할 것으로 예측

한국의 내외국인별 NT분야 특허동향

전세계 국가별 기술혁신 리더 TOP 10


3개이상 국가에서 순위내에 포함된 출원인(특허권자)은 IBM과 NEC - IBM은 미국 1위, 유럽 3위, 한국 9위 - NEC는 일본 2위, 미국 4위, 유럽 9위

순위	미국		일본		유럽(EPO)		한국		
	특허권자	건수	출원인	건수	출원인	건수	출원인	건수	
1	IBM	642	HITACHI	508	L'OREAL	226	삼성SDI	115	
2	Xerox Corporation	560	NEC	243	XEROX CORP	122	NEC	93	
3	3M	503	JEOL	229	IBM	118	LG전자	83	
4	NEC	433	SONY	210	MATSUSHITA ELECTRIC	117	삼성전자	76	
5	Motorola	318	CANON	207	EASTMAN KODAK	108	한국 전자통신 연구원	76	
6	Micron Technology	294	MATSUSHITA ELECTRIC	201	CANON	105	한국과학 기술연구원	56	
7	UNIVERSITY OF CALIFORNIA	285	Seiko	176	ROHM AND HAAS	87	하이닉스 반도체	54	
8	Toshiba	285	OLYMPUS	171	Sumitomo Electric	76	한국화학 연구원	39	
9	Advanced Micro devices	252	JAPAN SCIENCE & TECHNOLOGY CORP	154	NEC	70	IBM	38	
10	EASTMAN KODAK(US)	242	FUJITSU	136	HITACHI	68	일진나노텍 (주)	33	



미국특허로 본 NT분야 기술분야별 등록추이

- NT분야는 '98년을 기점으로 급성장
 - 특히 나노소자와 나노소재, 나노바이오·보건과 나노기반·공정분야는 유사한 형태로 진행

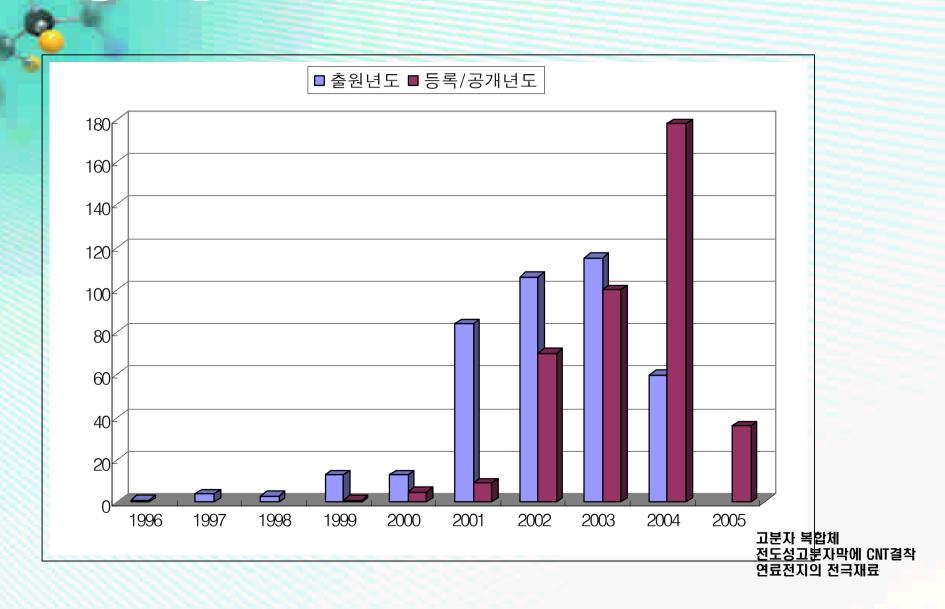
미국특허로 분 NT분야 세부기술별 점유율

국가별 나노소재분야 기술력지표

국적	점유율 (Patent Share)		특허활 (Activity	동지수 y Index)		력지수 pact Index)	기술력지수 (Technical Strength)		
	순위	PS	순위	Al	순위	PII	순위	TS	
미국	1	73.12	5	1.06	7	1.16	1	6089.94	
일본	2	10.12	90	0.71	7	0.57	2	412.45	
독일	3	4.13	(1)	1.25	8	0.46	4	135.59	
프랑스	4	3.30	8	0.87	5	0.64	3	152.08	
캐나다	5	1.42	7	0.90	3	0.75	5	76.41	
영국	6	1.25	3	1.18	4	0.71	6	63.58	
스위스	7	0.85	2	1.21	2	0.82	7	50.20	
네덜란드	8	0.84	4	1.15	6	0.58	8	34.81	
한국	9	0.68	10	0.69	9	0.21	9	10.44	
이탈리아	10	0.50	6	0.93	10	0.16	10	5.86	

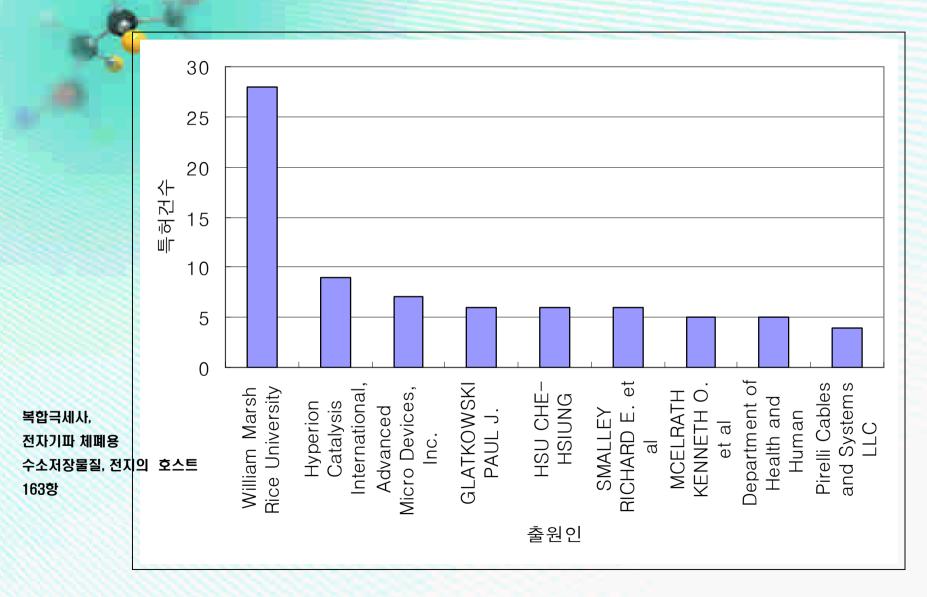
미국특허에서 출원인 TOP의 기술분포

분류	세부분류	IBM	Xerox	3M	NEC	Motorola	Micron Technolo gy	Univ. of California	Toshiba	Advanced Micro Devices	Eastman Kodak
나노 소자	나노전자소자	174	11	9	215	157	153	26	76	164	3
	나노정보저장	155	2	9	64	34	47	9	56	2	7
	나노광소자	56	77	55	71	40	16	30	37	10	31
	나노분말소재	20	45	49	8	2	3	14	2	-	16
	고기능소재	48	97	168	13	6	16	26	24	4	33
나노 소재	전자응용소재	30	282	35	16	10	8	11	7	3	110
	촉매·기공소재	10	9	81	7	2	1	20	_	-	12
	환경·에너지소재	1		18		6	1	6	4	_	-
나노 바이 오·보 건	나노바이오·보건 물질	1		6		-		17	-	-	_
	의약·약물전달시 스템			1		-		37	-	-	11
	분석·진단·치료	6	1	19	-	5	-	39	1		2
나노 기반 공정	나노측정·조작기 술	71	9	14	13	24	12	30	8	35	13
	나노물리·화학공 정	13	14	21	5	5	2	12	4	2	4
	나노패터닝공정	28	5	15	6	13	18	3	12	11	_
	나노전산모사	29	8	3	15	14	17	5	22	21	_




주요국가별 최다등록 특허권자 세부기술별 동향

국적	미국	일본	프랑스	독일	캐나다	영국	한국	대만	네덜 란드	이탈 리아
특허권자	IBM	NEC	L'Oreal	Bayer	Hyal Pharmac eutical	British Technol ogy Group	삼성 전자	Talwan Semicon ductor Manufac turing	Philips Electroni CS	SGS- Thomso n Microele ctronics
나노전자소자	174	215					25	33	8	8
나노정보저장	155	64					7	1		14
나노광소자	56	71		4		2	14		3	1
나노분말소재	20	8	11	17						
고기능소재	48	13	8	8	H	2	7	1	3	
전자응용소재	30	16		3			T		2	
촉매.기공소재	10	7	1	12				1		-
환경.에너지소재	1					-		H		_
나노바이오 보건물질			190			1		ľ		-
의약.약물전달시스템			21	1	29	1		ŀ		
분석.진단.치료	6		1			-	1	1	1	_
나노측정 조작기술	71	13				1	2	4	-	-
나노물리 화학공정	13	5	5	1	-	1	1	_	_	1
나노패터닝공정	28	6	333		_	_	1	16	_	-
나노전산모사	29	15		-	_		3	2	-	_
합계	642	433	237	46	29	8	55	57	17	24



출원(등록/공개)년도별 미국의 나노특허추이

출원인별 미국의 나노특허추이

IPC별 미국의 나노특허추이

Fuel cell electrode

수소저장을 위한 카본질 재료: 165항

결론

- · 나노기술은 신기술분야로 급속한 성장단계
- 나노기술의 특징: 특허출원명세서, 특허청구범위
- 원천특허의 중요성 : 특허분쟁, 보호전략
- 내국인은 외국인보다 연구개발 착수시점이 크게 뒤쳐지며, 2000년 이후에 그 성과가 가시화되고 있음
- 나노발명은 많아도 나노특허는 없어 기술경쟁력이 매우 약하다
- 미국과 일본의 기술개발 패턴을 꾸준히 모니터링하고 캐나다, 중국, 호주 등의 신흥경쟁국가에 대한 심층분석도 필요
- · 국가연구개발사업에 특허동향분석 시행: 국가R&D특허지원단
- 선행기술조사강화, 중복투자 방지
- 국제특허분쟁에 대비 : 회피용 특허망 구축이나 미선점분야에 대한 원천특허망 선점등의 전략필요

