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Part 1

Signals



Chapter 1

Introduction to Signals

Loosely speaking, signal is a quantitative phenomenon that varies with time.
Hence, the signal is taken to be a time function defined on (—oo, o). Often
we are only interested in the future from the present. In this case, assuming
the present is ¢ = 0 without loss of generality, a signal is a function defined on
[0,00) or is treated without loss of generality as a time function on (—oo, 00)
which is 0 for all £ < 0.

Ex: Temperature in the heater

Concentration in the reactor

Position and velocity of robot arm



Chapter 2

Periodic Signals and Fourier
Series

A signal u is called periodic with period T' if
u(t) =u(t+kT), Yk=0,£1,42,---.

In this case, it suffices to consider any interval with length T'; e.g. [0,7],

Ex)

Complex Exponentials
Consider the complex exponential:

e/t = cos wt + jsinwt

where

27

w=—.

T

Then
e]w(t—I—T) — e]wt 6]271’ — GJWt.
o~

=1

Hence, e/“ is periodic with period T'. Clearly, w is the frequency associated
with e/*?,

Now consider the complex exponentials:

e =0,41,4£2,---.



Then

ejnw(t—I—T) — ejnwt ej?n?r — ejnwt
~——
=1

and thus /™! is also periodic with period T'. Indeed the smallest period of
et is % and the associated frequency is |n|w.

Define the inner product between two periodic complex functions f,g¢
with period T as

()= [ __ g

Then the inner product between two complex exponentials is

s s
<ejmwt7ejnwt> — /2T ejmwte]‘nwtdt — /2T ej(m—n)wtdt
-2 -2
T
t|iz =T form=n
2
_ T .
glm=—wt |3 psin(m—n)r __
W—%_TW_O form#n

Hence, the above complex exponentials are orthogonal each other.
Fourier Series

Recall that any vector x in R" can be expanded with the orthogonal basis
vectors {vi}i_;:

T = Z arUL
k=1
From the orthogonality,
(@, vr)
(o, i)

Similarly, a periodic complex function f with period T' can be expanded with
the basis functions {ejk‘”t

k=—co

ap =

f: Z erjkwt

k=—o00
where

r
2

(eiket | gikwt) T

PR L B /_ F(t)e= ™,

[N



The above expansion is called the Fourier series expansion and F},’s are called
the Fourier coefficients. Notice that

1 [%

Remark 1: Given f, the Fourier coefficients that form a sequence (function
of integers) can be computed using the Fourier coefficient formula. Converse-
ly given Fourier coefficients, the original function f can be recovered from
them. Hence the Fourier series defines an invertible relationship between a
periodic function and the associated Fourier coefficient sequence.

Remark 2: Visible light composes of various light with different wave
lengths or frequencies. Using the prism, visible light can be decomposed
into light with different frequencies. Similarly, a periodic function composes
periodic functions with different frequencies and can be decomposed into
periodic functions with different frequencies via Fourier series expansion.

Ex: Let T'=2 and
fity=t, te[-1,1].
Hence w = 7. Now the Fourier coeflicients are

F ! 1al
= — tdt =0
0 2/_1

and for k= +1,42,---,

I 1 _k 1
Fk:—/ te Tt = | ———te I + - / eI dt
2/ 29 km ey kT )

=— ]kLTr cos kT

1

1 1
- (=1 =
jkﬂ'( ) 2k2 72

— gkt

=—1 kr’

To this end, .
1 = 1 kJ gkt
Ft)= > (=1

kE=—x
k#0



Spectra of Signals

The Fourier coefficient of a frequency represents how much the associated
frequency component, e/***, the original periodic function has. However, the
Fourier coefficients are complex scalars. Hence in polar form,

Fk = |Fk|€j€k

where

4] = y/[Re(F)J? + [Tm(Fy)?
Re(Fy)’
| F.| as a function of £ is called the amplitude spectra whereas 8, as a function
of k the phase spectra. Notice that the spectra can be viewed as a function
of frequency kw instead of k.

The signals we will consider are real. Hence, let f be a real periodic

function. Then f = f and thus
1 (% : 1 (% ——
Fi = T/_g F(t)e gy = T/_%f(t)ef’mdt — T,

To this end for real periodic signals, the amplitude spectra is an even function
of k whereas the phase spectra is an odd function of k. Hence for real periodic
signals, 1t suffices to examine the spectra for £ > 0.

Parseval’s Theorem

Parseval’s Theorem: Let f be a periodic signal. Then

T/ (OFdt =3 [Fil

k=—0c0

tan 0, =

Hence,

Proof:

T

5 B
7/ ra =g [ i
T

T
/2 Z Z FkFe j(k— lwtdt Z Z FkFl{_ /2T J(k— lwtdt }

2 k=—o0 [=—c0 k=—0c0 l=—00

—_————
_{T for k =1
L0 for k#1



o0

= ), Bli= ) |Hl

k=—c0 k=—c0

O

Notice that the LHS defines the size of f and the RHS the size of the

associated Fourier coefficients. Hence, the Parsevals theorem dictates that

the invertible relationship between a periodic function and the associated

Fourier coefficients is isometrically isomorphism (roughly speaking invertible

and the sizes of a periodic function and the associated Fourier coefficients
are the same).



Chapter 3

Signals and Fourier Transform

As shown in the previous chapter, a periodic signal can be decomposed of
complex exponentials whose frequencies are integer multiple of that of the
periodic signal. However, a signal is in general not periodic. Clearly a non-
periodic signal cannot be represented as a Fourier series. Instead, it can be
represented as a Fourier transform which is a generalization of Fourier se-
ries. Roughly speaking, a nonperiodic signal can be decomposed of complex
exponentials of all frequencies.
To see this let f be a periodic function with period 7'. Then

f: Z erjkwt

k=—0c0

where
1 % ,
Fk = T/ T f(t)e_]kWtdt.
Hence,
00 T
=Y ejkm;/i f(t)e ™ dt.
k=—c T3

For an aperiodic function, T' = oco. Then w — dw as T' — oo, and kw — w
as k — oo. Hence,

1

" or

/ /_ O:O eIt /_ O:O F(t)e dtdo.



To this end, an aperiodic function f can be expanded with the functions
{e’“t:w e R}:
1 e ,
7() L/ Fw)etde
where

F@):/mfakﬁmﬁ

— 00

that can be obtained from (f, ¢*'). The above expansion is called the inverse
Fourier transform and F'(-) is called the Fourier transform.

Similar to the Fourier series, the Fourier transform defines an invertible
relationship between a function and the associated Fourier transform. More-
over, the Fourier transform of a function represents the frequency content of
the function.

Ex 1: Let

ft) =e""U()
where U(t) is the unit step function defined by

lﬂﬂ:{1 ift>0

0 ift<0
Then
oo . o0 . 1
Ploy= [ e e U(ndr = [T e et = ——
—c0 0 14+ jw
To this end,
1 joo 4
f(t) = —/ ;,e]‘”tdw
27 J—oo 1 + jw
FEx 2: Consider the Direc delta function
oo ift=0
“”—{o it140
such that -
| st —ryde = fx).
Then



Hence

1 0o .
o(t —to) = —/ eVt IV dy,
27 J—oo
Ex 3: Suppose F(w) = é(w — wp). Then
1 o jwt 1 jwot
ft) = —/ e’ 0 (w — wp)dw = —e’*0".
21 J—oo 27

Ex 4: Let f(t) = ¢/*o'. Then from Ex 3,

Flw) = /Oo eIt Jf — 276(w — wo).

— 00

Spectra of Signals

The Fourier transform at a frequency represents how much the associated
frequency component, e/“*, the original function has. However, the Fourier
transform is a complex scalar. Hence in polar form,

Fw) = |[F(w)]e”)

where

[F(w)] = \/[Re(F(@))]2 + [Im(F(w)))?

Im(F(w))
tan f(w) = ———=.
)= ReF@)
|F'(w)] as a function of w is called the amplitude spectra whereas 6(w) as a
function of w the phase spectra. Notice that, for Fourier series, the spectra
could be viewed as a function of frequency kw.
The signals we will consider are real. Hence, let f be a real function.

Then f = f and thus

Flw) = / T f(t)etdt = / " Teeidt = F—w).

— 00 — 00

Hence,

[F(@)]e*) = F(w) = Fl=w) = |F(—w)le .

To this end for real signals, the amplitude spectra is an even function of w
whereas the phase spectra is an odd function of w. Hence for real signals, it
suffices to examine the spectra for w > 0.

10



Parseval’s Theorem

Parseval’s Theorem:

fﬁmmwﬁ:iliF@m@m&

—00 27

Proof:

[ st = [ (5 |7 petao) (g2 [ croreas)a
-5 [ [ rds (;T /°° eI doy

N
:§%KZF@q[mGw)w—wM@m_——/ G(w)dw.

If f =g, the Parseval’s theorem reduces to

o] 1 o]
|k = — [ () e,
—00 n
Notice that the LHS defines the size of f and the RHS the size of the as-

sociated Fourier transform. Hence, the Parsevals theorem dictates that the
invertible relationship between a function and the associated Fourier trans-
form is an isometrically isomorphism.

Convergence of Fourier Transform

Contrary to the Fourier series, the Fourier transform

o0

F@):/ F(t)e=tdi

— 00

may not exist even for a simple function like step function, f(¢) = U(t). A
sufficient condition for the Fourier transform to exist is that f(¢) has a finite
number of discontinuities over any finite interval and that

/mmmﬁ<m

— 00

11



Chapter 4

Signals and Laplace Transform

From the convergence consideration of Fourier transform at the end of the
previous chapter, the Fourier transform analysis of a signal is limited to a
certain class that is not big enough. Hence, the generalization of Fourier
transform to a wider class of functions are desirable. Indeed this can be
achieved adding exponentially decaying term in the integral over the real
line. To this end, consider

1 feo ,
f(t) —/ Fy(o —I—jw)e(gﬂw)tdw

:27T —00

where

Fylo + jw) = /OO f(t)e ™t dt.

The above expansion is called the inverse Laplace Transform and Fy(-) is
called the double-sided Laplace transform. Notice that the Fourier transform
is readily recovered if o = 0.

Let s = 0 + jw. Then we get

H=1 [T Bs)erd
f()—%/g_joo a(s)e”ds

where

&@):/mfuk*Wt

If we are interested in a signal over [0, c0), the single-sided Laplace transform

is obtained as follows:

N@:liﬂﬁ%k”ﬁ:é FOU (e tdt.

12



Throughout the note, Laplace transform means single-sided Laplace trans-
form unless stated otherwise. If o > 0, the Laplace transform is more likely
to converge compared to the Fourier transform. Indeed, the convergence is
guaranteed if

[T st = [T e < o

Clearly for o > 0, this condition is much more weaker than the convergence
condition for the Fourier transform.

Since the Laplace transform has been discussed in Process Control I, its
discussion will be omitted here.

Connection between Single-Sided and Double-Sided Laplace Transforms

Suppose f be defined on (—o0,00). Then

f) = Alt) + fa(1)

where
ht)=fRUR),  fot) = FOU(-1).
Then

Eis) = [ pwetar= [T pmear+ [ OOO Falt)etdt

— 00

= / fl(t)e_Stdt + / fz(—t/) GStIdt/ = Fl(S) + F/Q(S).
0 0 S
f15(t)
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Part 11

Systems
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Chapter 5

Preliminaries on Linear

Algebra

5.1 Linear Operators

An operator (transformation or mapping) A from R™ to R™ is a rule that
associates every elements in R” to an element of R™.
An operator A from R™ to R™ is said to be linear if

Alax + ) = aAx + pAZ, Vo, € R"
Terminologies:
1. Null Space (Kernel):
N(A)={ueR": Au =0}

The dimension of null space is called the nullity.

2. Range Space (Image):
R(A)={veR":v=Au,uec R"} = AR"
The dimension of range space is called the rank.

Matrix Representation of Linear Operators

15



Let {u;}7_, be the basis for R". Then

i3
T = iju]‘.
J=1

By linearity of A,
Az = Aiju]‘ = Z@Au]
7=1

J=1

Let {v;}7, be the basis for R™. Then
Auy =3 asyo,
=
U
f;mvi =y = Az = inguj = igj f;aijvi = fj (zn: %gj) v,
p p i

i=1 \j=1
Hence,
n = A{
where
11 - dip
A =
At 0 Ay

Theorem: Let {u;}7_, and {v;}7L; be the bases for R” and R™, respec-
tively. Then, w.r.t. these bases, A is represented by the m x n matrix.

Change of Basis

Let {ug}7_; and {@;}"; be two bases for R" and {v;}7, and {0;}/", two
bases for R™. Then

Ui =Y pritik
k=1
U
Sobur=a=3 &ui= Y puiux
k=1 =1 i,k=1
U

16



§=P¢
Notice that the ith column of P is the representation of @; w.r.t {u;}.
Similarly,

=@
Notice that the ith column of @) is the representation of v; w.r.t {o;}.
Let y = Axe = n = Al =

= QAE = QAPE
U

the representation of linear operator w.r.t. {u;} and {9;} is
A=QAP

Special Case: V' = U and use same basis for both domain and range.
Then )
PQ=1 = Q=P"' = A=P'AP

Such transformation from A to A is called similarity transformation.
Orthogonal Decomposition
Let S be a subspace of R®. Then the orthogonal complement of S is
defined as

Sti={xeR": (z,y) =0, Vy € 5}.

Fact (Orthogonal Decomposition): R" = 5 & S+,
Proof: Suppose x € R™. Let x; be the projection of # on S. Then
T9 = x — 1 is orthogonal to S and thus z, € S*.

17



Hence, the fact follows. a
Suppose y*Ax = (A*y)*x = 0 for all + € R™. This is equivalent to
y € N(A*). Moreover since Av € R(A), the supposition is equivalent to
y*z = 0 for all z € R(A). To this end, N'(A*) is the orthogonal complement
of R(A) and thus
R™ = R(A) & N(A").

Similarly,
R" = R(A™) @ N(A).

Eigenvalues and Eigenvectors

Def: A € C is called an eigenvalue of A if 3 right (left) eigenvector
x(y) # 0 such that Az = Az (y*A = Ay™).

Fact: X is an eigenvalue of A iff it is a solution of the characteristic
polynomial

x4a(A) = det(A — A) = 0.

Theorem: Let Ay,---, A, be the distinct eigenvalues of A and v; be an
eigenvalue associated with A;. Then {v;}"_, is linearly independent.
Proof: Suppose the contrary. Ja;’s (not all zero) such that

avy + -+ anv, = 0.

WLOG, we assume a; # 0. Then

(A= o) (A= \T) (; aivi) = 0.

Notice that
(A — )\]‘])vi = ()\Z — )\]‘)vi lfj 7£ 7

and
(A — )\Z])UZ =0.
Hence,
Cll()\l — )\2) te ()\1 — )\n)vl =0.
Since A;’s are distinct, this implies a3 = 0 (contradiction!). O

Def.: A matrix is simple if its eigenvectors span C".
Corollary: If eigenvalues of A are all disticnt, A is simple.

18



Remark: There exist simple matrices whose eigenvalues of A are not all
10

01 )

Let A be simple. Then notice that

disticnt. (Ex:

AV = VA

where

V=lvg - vy A=diag{r, -, A\ }.

Since V is nonsingular, we have
VTIAV = A

Note that A is the representation of A in terms of its eigenvectors.
Fact: If A is simple, A can be diagonalized by similarity transform.
Positive Definite Hermitian Square Matrix
Def.: A is Hermitian iff A = A*.

Fact: Let A be Hermitian.

1. x*Ax is real.
2. eigenvalues of A are all real.

3. eigenvectors are all orthogonal.

Proof: 1) (z*Ax)* = a*A*x = a* Ax.

2) Let X be an eigenvalue and v be the corresponding eigenvector. Then
v*Av = Av*v. Note that LHS is real, and v*v is real and > 0.

3) (Proof for distinct eigenvalue case) Au = Au and Av = pov with A # p.
Note that u*A = Au”. Hence

uAv = v and utAv = puv.

= v = putv = urv = 0. O
Def.: A is positive semidefinite (PSD) if *Ax > 0 for all .
Def.: A is positive definite (PD) if 2*Ax > 0 for all « # 0.
Fact: TFAE

1. Ais PSD (PD).

19



2. all its eigenvalues are nonnegative (positive).

Proof: (1 = 2) Let A; be an eigenvalue and v; be the corresponding unit
eigenvector. Then

Avi = v, = 0< (<)U;KAUZ' = )\ivi*vi = A;.
(2 = 1) {v;} orthonormal eigenvectors
Az = Alayvr + - + ayv,) = a1 Avy + - + a, Av, = ar o1 + -+ a Ao,

U
2 Ax = (aqv] +- -t a,v) ) (@ v+ FagAyo,) = a%)\l +--4ark, > (>)0.

O
Functions of Matrices

Let A be a square matrix and p(t) be a polynomial:
p(t) = ao + a1t + at  + -+ a,t".
Then the matrix polynomial is defined as
p(A) = aol + 1A+ azA* + -+ + a, A"

Cayley Hamilton Theorem: Let x4(A\) = det(Al — A) = A" + a1 A" +
-+« 4+ a,_1A + a, be the characteristic polynomial of A. Then

xa(A)=A"+a A"+ a1 At a, =0

Proof for simple A: Let v; be an eigenvector of A associated with eigen-

value A;. Then

XA(A)V = Vdiag{xa(M), -, xa(An)} =0

where V' = [v1 -+ v,]. Since V is nonsingular, y4(A) = 0. a
Corollary: A* k > n, is a linear combination of /1, A, ---, A»7L,
Matrix Exponential
Consider the Taylor series expansion of the exponential function e*":

n

at Cl22 a n
e =14+at+—t"4+---+—t"+--.
21 n!

20



Now the matrix exponential e is defined as

A? A"
eM = T At o
2! n!

Fact: Properties of Matrix Exponential e4?

1.
ieAt _ AeAt _ €AtA.
dt

eA(t1+t2) — At Al

3. ¢! is nonsingular and

At]—l —At‘

[e =

4. For nonsingular P,
—1 _
ePAP t_ PeAtP 1‘

At = ,C_l(sl — A)_l = ,C_I(IS_I +AsT 4 A% 4. ).

6. The matrix exponential can be written as a finite order polynomial

n—1

et = Z ozk(t)Ak.

k=0

Proof: 1) and 4) are obvious from the series representation of .
2) Consider e*'zq. Then

d
E(e’“:}co) = Aez,.
Hence ez is the solution to
Loty = Axlt).  a(0) =
dtx = Ax(t), 2(0) = xo.

To this end, for all xg,

AT gy = 2ty + 1) = e a(ty)

21



3) 2) = el = [ = [eM]7! = ¢4 = 4! nonsingular.
5) Taking LT’s of #(t) = Az(t) with z(0) = zo and z(¢) = e*'zy, we get

sX(s)=AX(s)+ 20 = X(s)=(s]—A)"xg

and

X(s) = LeM - g,

respectively. Hence,

1 At = AR o Ak —k—1
(sl —A)y"" = Le :,C(Z k'):ZAS__.
k=0 : k=0
6) follows from the Cayley-Hamilton Theorem. a

Notice that the matrix exponential can be computed using Fact 5) & 6).

22



Chapter 6

Introduction to Systems

A system is a signal processor that processes the input signal and gives the

output signal.

Input Output
o System

y=Su
A system is mathematically described by an equation between input and

output.
A system is linear if for any scalars ay, a9 € F and signals uy, us,

S(a1u1 + GQUQ) == a1$u1 + GQSUQ.
Notice that SO0 =0 x S1 = 0.

A system is time invariant if for any ¢, 7
y(-) = Sul-), =()=Su(-—7),

23



U
() =yl —17)

A system is causal (physical, nonanticipative) if the output y(¢) depends
only on the past and the current input u(7), 7 < £. Notice that any physically
meaningful system must be causal.

A causal system is instantaneous (static, stationary, memoryless) if the
output y(t) depends only on the current input u(?). Otherwise a causal sys-
tem is called dynamic. Usually a static system is mathematically described
by an algebraic equation between input and output whereas a dynamic sys-
tem by a differential equation.

24



Chapter 7

Representation of Linear
Dynamic Systems

7.1 Differential Equation Models

Differential Equation Model
A linear dynamic physical system is modeled by a linear differential equa-
tion (which may be an approximation of a nonlinear dynamic system through

linearization of a nonlinear differential equation):
y " +ary" Y 4t g+ any = bou™ 4 buT b+ by

Notice that the largest order of differentiation of LHS is greater (by = 0)
than or equal (by # 0) to that of RHS and, thus, the system is causal. The
solution consists of the homogeneous part y; and the nonhomogenous part
Yn. Clearly the first depends on the initial conditions:
y(to) = yo, y(to) = Yo, ~*, y(n—1)(0) = y(()n—l)7

whereas the second on the forcing function (RHS of the equation) that is the
input u. Hence y;, (y,) represents the effects of initial condition (input) on
the output.

State Space Model

Consider

f(n) _I_ alf(n_l) _I_ . _I_ an—lé —|— anf = U.

25



Then by linearity

y = bl 4 b €D 4 b €+ boE
Moreover using the above differential equation,

y = FET b B €+ B+ bou

where

3 = b; — boas.
Now from the initial condition y(to) = yo,
yo = y(to) = BreU D (to) + -+ + B1_1E(to) + Bré(to) + boulto).
Similarly using the above differential equation, for i = 0,---,n — 1
ys! =y (ko) = BYETHT (tg) 4 -+ B (1) + B (t0) + boul) (8).
and thus
) = BiuW(te) — - - — Biu(to) = BV (tg) -+ Bi_ E(te) + B E(Lo).  (¥)

Notice that we have n equations and n unknowns of ¢'. Hence, the differential
equation in the previous section is equivalent to the equation:

€ a6 e, € ant =,

y = AN 41 30 €+ B2+ bou

with the initial condition computed from the equations (*).
Remark 1: If RHS of the differential equation in the previous chapter is

u, then & = y.
Remark 2: If by = 0, then 3) = by, -+, 3° = b,.
Let ‘
1= f’ T2 = 57 s Tp-1 = f(n—2)7 Ty = f(n_l).
Then

92?1:5:51?2

92?2:5:51?3

26



oot = 7Y = 2,
ip =W = —q e — g € — a4 u
= =Ty — * — Up_1Ty — ATy + Y.
Hence the differential equation can be rewritten as the so-called controller

canonical form:

[0 1 0 ] [0 ]
0 1 0 0
= : .. - - : T+ u
0 0 0 a1 0
| —Gn —Gpo1 —Gp—p o —ay I 1 |

y =18, By -+ Blz + bou.

In general, a linear time invariant system is described by
z = Ax 4+ bu State DE

y=c'z+du Readout Map

Notice that the system is completely characterized by the matrix [A, b, ¢, d].
Fact: the closed form solution of the state space equation is

¢
z(t) = e —I—/O eA(t_T)bu(T)dT.

Th

Tn

Proof: Att =0,
z(0) = a9

Moreover,

&(t) = Aetay + bu(t / AeAlt- T)bu( Ydr = Ax(t) + bu(?).

Hence,

y(t) = cTe m+/’TAfT (r)dr + dult).

Yn

27



State
Given a time instant ¢, the state of the system is the minimal information
that are necessary to calculate the future response.

For ODE’s, the concept of the state is the same as that of the initial
condition.

U
State = x(t)

Consider the change of coordinate of the state space such that @ = Px.

Then
*=Ax+bu, y=-cx+du

U
T=Az+bu, y=¢x+du

where

A=PAP™" b=Pb ' =P d=d.

Hence, two systems represented by [A, b, ¢, d] and [A, b, ¢, d] are equivalent
because the only difference is the coordinate system of the state space.
Finally for an input such that @(—o0) =0,

—t
e_At:L'O—I—/ e_Ate_ATbu(T)dT]
0

0
= (tlim e_At) (:1;0 —/ e_ATbu(T)dT) )

! is oo or invertible,

0=2x(—00) = tlim

Since limy_., e=4

0
To = / e_ATbu(T)dT.

Hence the initial condition can be viewed as a condensed core memory of the
past. Notice that

¢
z(t) = e —I—/ eA(t_T)bu(T)dT
0

0 ¢ ¢
:/ eA(t_T)bu(T)dT—l-/ A pu(r)dr :/ A bu (1) dr.
0 —00

— 00
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7.2 Input-Output Models

An input-output model describes the effects of input on the output only.
Hence, the initial condition is assumed to be the zero steady state. Thus this
assumption will be adopted anywhere an input-output model is considered.
Laplace Domain Model: Transfer Function
Under zero initial condition assumption, the Laplace transform of the

original differential equation is

Y (8)+ars" Y (s) 44 a,Y(s) = bos"U(s) +bys" U (s) + -+ b,U(s).
Hence

Y(s)  bos" +byis" 44 b,

U(s)  s"+as" 1 +--+a,

(i(s) is called transfer function of the system. The denominator polynomial

is called the characteristic polynomial and its solutions are called the poles.
On the other hand, the solutions of the numerator polynomial is called he

G(s) =

ZETOoS.
by: finite = system is proper.
by = 0 = system is strictly proper.
On the other hand, the Laplace transform of the state space equation is

sX(s) = AX(s)+ bU(s)
Y(s)= cTX(S) + dU(s)
U
Y(s)=[c"(s] — Ao+ d)U(s)
Hence the transfer function associated with the state equation is

G(s) =cl(sI — A)7'b 4 d.

d: finite = system is proper.
d = 0 = system 1is strictly proper.
Suppose [A, b, ¢,d] and [A, b, ¢, d] are equivalent. Then

(sl —A)o+d=c"P (sl — PAPY) ' Pb+d

= PUP(sT — AP PO+ d =" (s — A)7b 4 d.
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Hence two equivalent state equations result in the same transfer function and
thus are the two different representation of a system.

Fact: state space representation of an /O description is not unique.

Realization problem: Given (7, what is the state space realization [A, B, C, D]
whose transfer function matrix is G7

Clearly the controller form of realization can be obtained transforming
the transfer function into differential equation model. Different realization
can be obtained by changing the coordinate of the state space.

Finally notice that if

0
o = / e bu(r)dr,

the double sided Laplace transform needs to be used. In that case, notice
that U and Y are different but G remains the same.

Time Domain Model: Convolution

Impulse Response (g(t)): y(¢) when 29 =0 and v = 6

13
g(1) = / e ADps(7)dr + do(1) = TeMb + ds(t) Wt >0
0

U
y(t) = /Ot cTeA(t_T)bu(T)dT + du(t)

¢
= / g(t — )u(r)dr = G *u(t) Convolution
0

Taking Laplace transform,

Hence, transfer function is the Laplace transform of the impulse response.
Notice that the Laplace transform of the delta function is 1.
Suppose

0
To = / e_ATbu(T)dT.

Then .
y(t) = / cTeA(t_T)bu(T)dT + du(t).
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Now the impulse Response ¢(t) is y(t) when u(t) = 6(1):

t T A
o) = [N s(ryar 4 sy = { TV HAD 120

Hence, the convolution is

where

g(t) = clettp 4 do(t).
Taking double-sided Laplace transform,
Ya(s) = Ga(s)Ug(s) = G(s)Uq(s).

Notice that transfer function remains the same.
Fact: For all —oo <t < o0,

output subject to the input e*

G(s) =

est

Proof:

o(t)= [ gt = et [T (e = ).
0

0

Corollary: For all —oco < t < o0,

output subject to the input e/*?

G(jw) =

ejwt

31



Chapter 8

Dynamic Responses to Typical
Inputs

8.1 Step Response

Discussed in Process Control 1 and thus omitted.

8.2 Periodic Input Response

Fact: the response of a linear time-invariant system subject to a periodic
input is also periodic with the same period as that of the input.
Proof: Let u be periodic with period T'. Then

u(t) = Z Ugel et
Now from the corollary in the previous chapter,

y(t)=>_ UG5 kw)el™ .

Notice that Y = G(jkw)Uy and thus

Vil = |G (k)| Ukl

32



L(Yr) = L(G(jhw)) + L(Uk).
Ex: Consider u(t) = ugsinwt. Notice that

] e]wt _ e—]wt
sin wt = ug

2)
Hence ]
—;‘—2 itk =-1
Uy = ;—3 fk=1 .
0 otherwise
Therefore . .
y(t) _ UOG(]CU) ejwt . qu(—]w) e—jwt‘
2) 2)
Let
0 =LG(jw).
Then since G(jw) = G(—jw),
o edfeiwt _ om0 gt . X )
y(1) = uo|G(jw)| = ug|G(jw)|sin(wt + ) = yo sin(wt + 6)

23

where yo = ug|G(jw)|. Hence the output is also sine wave with the same
period although the amplitude has changed and phase angle has shifted.

8.3 Frequency Response

Given an input signal wu,
u(t) = 1 /OO U(w)e’! dw
2 —o0 ‘
Now from the corollary in the previous chapter,
1 o : jwt
y(t) = 2—/ U(w)G(jw)e’ dw.
T J—0

Hence Y(w) = G(jw)U(w) where G(jw) is called the frequency response
function. To this end, the input signal is decomposed into different frequency
components through Fourier transform, a frequency component of the input

33



with frequency w is adjusted by the system to give the frequency component
of the output with the same frequency, and the output signal is obtained from
the frequency components of the output through inverse Fourier transform.
Notice that
Y(w)] = Gl U ()]

LY (w)) = LG(jw)) + L(U(w)).
Amplitude ratio (AR):

Y
AR(w) - |U(w)| - |G(] )|
Magnitude ratio (MR):
MR(w) = Ai@

where K is the steady state gain of the plant.

Phase angle: 8(w) = L(Y(w)) — L(U(w)) = L(G(jw))

Notice that U(w) and Y(w) represent the content of w frequency compo-
nent in input and output, respectively.

[UGw)I

1GGwW)|

1YGw)I
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Hence if AR(w) (Z) 1, w frequency component of input signal is amplified

(attenuated).
Example: Consider

Y(s) K
G = =
(=) U(s) 71s+1
Then . .
1 1
() Jwt +1 ‘ V14 7202
f(w) = LG(jw) = éij 1 LK — /(1 + jwT) = — arctan(wT).

Question: How do AR(w) and #(w) behave as w changes?
Graphical Representation of AR and 6:

e Bode plot: log AR vs logw and 0 vs logw

e Nyquist plot: Re[G(jw)] vs Im[G(jw)]

8.3.1 Bode Plot

K
Ts+1

First order system: G,(s) =

AR = L, MR = ;, § = — arctan(wT)
wit? 41 wirt? +1
Step 1: Asymptotes
Asw—-0, MR —1=logMR — 0
Asw — 00, MR — &= = log MR — log* — logw (= 0 at w. = L and
slope = -1)
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10
1.0 _
MR : \‘
0.1 b -
0.01
_%L Qw,rad/timeg Q
Step 2: MR(w,) = %
Step 3:
Asw—10,0—0
Asw — 00,0 — -7
O(w:) = =7
0—',1 l—',Qf,u,rad/timeg @
00
-45°
6 -90°
-135°
-180°
Second order system: (/p(s) = 7252_:%
K 1
AR = 5 MR = 9
\/(1 — Ww2T2)2 4 4£27%2 \/(1 — Ww2T2)2 4 4£27%2
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28wt

1— T2w2)

§ = — arctan(

Step 1: Asymptotes

Asw—0, MR —-1=logMR — 0

As w — o0, MR—>w217:>logMR—>long—2—210gw(:()atwc:}
and slope = -2)

10  — - ¥
ra £=0.1 t
X _£=:(;{2’
LT
A-£=0.4
A
1 ) e-08
S
MR AS
0.1
N
N
0.01
o 1w rad/time 12 10
Step 2: AR,00?
dMR 0 dl(1 —w?r?)? 4+ 4E27%0° 0
do dr20? =
| =287 |
MRmawzi at Wmeg — ———, S_
2T R

Step 3:
Asw—10,0—0
Asw /L0 7L
Asw\, 1,0\, -Z

Asw — 00,0 —» —7
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’ u L o rad/time 2
B fféoll
0BT N0

g o_mfzilo.J_HL.

-13 N

-180° .

Dead Time: G,(s) = e~*

AR == 1, 0= —u)to

10

10 I

MR

0.1

¢ '%w,rad/time I
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Complex Systems: G,(s) = G1(s)--- G,(s)
AR = |G (jw)l -+ |Gra(jw)]
0 =/L,G(jw)+ -+ LGy(Jw)

8.3.2 Nyquist Plot

K

First order system: G,(s) =

Ts+1
K
AR = , 0= —arctan(wr)
w?r2 41
w=0 AR=K and =0
— 1. — K _ _x
w—T.AR—ﬁandG— 1
w = o0: AR:()andﬁz—g
6=90°
Imaginary
1
/// \\\
/ \
/ AR=K \
0 A —  4=0 Real
wste 6=0°
9=-45°
oL
4=-90°
) _ K
Second order system: (/p(s) = P T—

K
\/(1 —w2r?)2 4 4527'2(4;27
0: AR=K and 0 =0
%: AR=L and 9= -

2 2

=o0: AR=0and 0 = —nx

AR =

§ = — arctan(

w
w
w
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Imaginary

AR=K

— A Real

Dead Time: G,(s) = e~*

AR == 1, 0= —u)to

Imaginary

Real

6=0,360°

6=270°
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Chapter 9

Stability of Dynamic Systems

Bounded Input Bounded Output Stability
Consider the 1/O description of a linear time-invariant system:

t
v(t) = [ gt = ryulr)dr
Def.: the system is bounded input bounded output (BIBO) stable if every

bounded input results in a bounded output.
Theorem: A linear time invariant system is BIBO stable iff

/OOO lg(7)]dT < oo.

Proof: (<) If u is bounded such that |u(t)| < M for all t > 0, then

< [Mlote =) llutr)lds

(o)l =| [ ot = ryu(ryar

<M [ glr)ldr < oo,
0
(=) Suppose the contrary. Let

U= dfg(t—r) <0

{1 ifg(t—7)>0

Then -
lim y(t) = / lg(7)]dT = oo.
0

t—o00
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This is a contradiction. O

Let
N(s)

ags™ 4+ -+ ap_15 + a,

Consider the step input U(s) = L that is bounded. Then

Gs) = 5(5; _

S

Y(S): N(S) l: aq _I__I_ (877 6

aps" +---+a,—15+ a, s s — 81 S — S, S

where s;’s are solutions of the polynomial equation ags™+---+a,_18+a, =0
(Here we assumed s; # 0 and all solutions are distinct for simplicity).

4

y(t) = a1’ o aget 4+ 3.

Hence, the output y(t) seems to be bounded if all s;’s are on the closed left
half plane. However, for BIBO stability, s;’s are not allowed to be on the
imaginary axes. To see this, consider s; = 0. Then
an

N

9

Y(S):%_|_..._|_

$—S8, S

U
y(t) = a; + - + a e’ + Bt

Since the solution of the polynomial equation ags™ +--- 4+ a,_18+a, =0
determines the stability characteristics of the system, the polynomial (equa-
tion) is called characteristic polynomial (equation). Notice that by Cramer’s
rule,

cTadj(SI — A)b+ det(s] — A)

G(s)=c'(sI = A)"b+d = det(sI — A)

where adj(s]—A)is the adjoint of s/—A. Hence the characteristic polynomial
is nothing more than the eigenvalue equation of A.

General Stability Criterion: The system is BIBO stable iff all roots of the
characteristic equation have negative real parts.
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Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion determines whether any roots of a poly-
nomial equation:

aps" + -+ a,_1s+a,=0
have positive real parts. In the following, we assume ag > 0 WLOG.
Routh array:
Rowl ag a9 ay
2 a1 ds ax

3 by b by
4 CO cl DTS
5 dy -
where
by — 4102=acas p  _ a1a4—agds
0 a 1 a
Co — boas—aj by cf — boar—ajba
0 bo 1 bo

do = cbi=bocs
0 -

Relationship between Routh array and the location of roots:

o If any element of the first column is negative, we have at least one root
to the right of the imaginary axis.

e The number of sign changes in the elements of the first column is equal
to the number of roots to the right of the imaginary axis.

Routh-Hurwitz Stability Criterion: The system is BIBO stable iff all
the elements in the first column of the Routh array associated with the
characteristic polynomial are positive.

Example: Consider the 2nd order polynomial characteristic equation:

2
ags” +ais+ax; =0

where ag > 0.
Routh array:

Rowl dg a9
2 aq
3 bo = Uy

U
For BIBO stability of the system, it must hold that aq,as > 0.

43



Chapter 10

Controllability and
Observability

Controllability
Def.: z is said to be reachable from the origin if there is an input u that
drives the state at the origin to z in (0,t] for some ?, i.e.

I AT
z = e bu(7)dr.
0

Def.: A state space, or equivalently (A, b), is said to be controllable if

each state is reachable.
For fixed t > 0, let Q(¢) be the set of all reachable state in (0, ¢]:

t
Qt) = {:1; S / eA(t_T)bu(T)dT}.
0
Notice that (%) is a subspace. Let M. be the set of all reachable state:
Mc - Ut>0Q(t).

Notice that M. is a subspace and is called controllable subspace. Define the
uncontrollable subspace as:

Mye = M = (Uso(1))" = Nisof2(t)*.

Notice that w € Q(¢)* iff
¢ ¢
0= <w,/ eA(t_T)bu(T)dT> :/ <w,eA(t_T)bu(T)>dT
0 0
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Set
T
u(r) = ble? =y, 0<7<t
Then
/ HbTeAT(t T)wH dr =10
0
and thus
bT AT(t—T)w — 07 0 S <t

Hence

Mye = Niso {w pTeAT =) —

- {w 10 =0T = b7 lz ai(t)(AT)i_ll w

Il
M= <

a; (1) (AT) " tw, Vi > 0} .

=1
bT
. bl AT
:{w:bT(AT)Z_lw:O,lgign}: w: ) w=70
bT(AT)n—l
bT
bl AT
=N :
bT(AT)n—l

Therefore since X = R(T™*) & N(T),

M.=TR ([b Ab - A”%]) .

controllability matriz

To this end, we have the following theorem.

Theorem: TFAE
o (A, b) controllable
o M, = {0}

o M.=R"
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o rank[b Ab --- A" =n
Ex: Let

Then
11
[b Ab] = [ 00 ]
Therefore det[b Ab] = 0 and thus (A, b) is not controllable. Clearly

Mczspanl(l)]

and thus
Muc:McLzspan[(l)].

Observability
Def.: x1 and x5 are equivalent if, for every input u, the outputs associated
with x; and x, are identical; i.e.

e :1;1—|—/ TeAlt=7 bu (7)dT+du(t) =cle :1;2—|—/ T eAlt= T)bu(T)dT—l—du(t)

or
ety = cTeAt:L'Q, Yt > 0.

Notice that two equivalent states are not distinguishable from their outputs.

Def.: A state space R", or equivalently (¢, A), is said to be observable if
any two equivalent states are identical.

Notice that, if (¢, A) is observable, any two states are distinguishable from
their outputs.

Define the unobservable subspace as

M, ={xeR": ety =0, Vi > 0}

which is the set of all states that are equivalent to 0. Notice that M, is a
subspace, and x1 and x5 are equivalent iff 1 — x9 € M,,.
Define the observable subspace as

M, = M.
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Suppose x1, Ty € M, are equivalent. Then x1 —xy € M, as well as 1 — x5 €
M,. Hence z1 = zo.
Notice that

M, ={xeR": ety =0, Vi > 0}

n

= {:1; c0=cletz =¢ [Z ozi(t)Ai_I] T = Zozi(t)cTAi_lx, vt > 0}

o
T
. ct A
:{x:cTAZ_lx:O,lgign}: € ) x=0
cTAn—l
o
A
=N ‘
cTAn—l

Therefore since X = R(T™*) & N(T),
M, =R ([e ATc -+ (AT)""'d]) .

To this end, we have the following theorem.

e (¢, A) observable

o M, = {0}
o M, =R"
o
cl'A
o rank ] =n
cTAn—l

Notice that (c, A) is observable iff (AT, ¢) is controllable.
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Part 111

Feedback Control Systems
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Chapter 11

Feedback Control Loop

Elements in the feedback loop:

e Process:

Yi(s) = Ga(s)M(s) + Ga(s)W (s)

o Measuring device:

o Controller:



where

e [Final Control Element:

The above block diagram can be reduced to

t —
R G G,=G .G,G,

Typical closed loop transfer functions:

RG) the effect of reference input to the output
Y

* o) the effect of disturbance to the output

I
GG i
Y= g eee ™ T Ty mas ™
I



Complementary sensitivity:

Yis) _ _ Gp(s)Gels)

Sensitivity:

Bode Stability Criterion:
Consider the feedback system:

Open Loop Transfer Function (OLTF): G.G,

Critical (Crossover) Frequency, w,.: frequency at which 6 for OLTF, G.G,,
is —7.

The closed loop system is stable if AR(w.) = |G.(jw.)G,(jw:)| < 1.
Otherwise, it is unstable.

Suppose AR(w.) = 1.

o Disconnect feedback line and apply E(t) = R(t) = Rosin w.t.

o After suffcient time passes, Y (¢) = Ypsin(w.t — 1) = Ro sin(w.t — 7).

o Set R(t) = 0 and connect feedback line. Then E(t) = —Y(t) =
— Rosin(w.t — 7) = Rosin(w.t) and, thus, Y(¢) = Ry sin(w.t — 7).
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Clearly, after settting R(?) = 0 and connecting feedback line, the magni-
tude of oscillation will decay (grow) if AR(w.) (; 1.

Nyquist Stability Criterion:

If N is the number of times that Nyquist plot encircles (—1,0) in the
clockwise direction and P is the number of unstable OLTF poles, then Z =
N + P is the number of unstable CLTF poles (N may be negative if Nyquist
plot encircles (—1,0) in the counter-clockwise direction).
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Chapter 12

PID Control

PID Control is extensively discussed in Process Control I and thus is omitted.
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Chapter 13

State Feedback Control
Systems

13.1 Pole-Zero Cancellation

Consider the unstable plant:

Y(s) 1
Gpls) = Uls) T s—1

If we connect the plant serially with the controller

o - Uis) s—1 2
C_V(S)_S—I-l_ s+1’
the resulting system
I s—1 1
G(s) = S

5—13—|—1_5—|—1

is stable. However this design doesn’t work. To see this, consider the con-
troller and plant state equations:

flz—l’l—QU
u=x1+v

Tg =T tu=x9+7+0V
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i = Za.
Notice that
z1(t) = ¢ ‘a9 — 2 0.

Taking LT of the equations,

B T T10 V(s)
Y(S)_X2(S)_5—1+(5—1)(5—|—1) s+17

and thus |

Yy =29 = e x99+ §(et — e Drw+e .

Notice that in the input output model where the initial condition is assumed
to be zero, the output is bounded. However it is difficult to keep the initial
condition at zero every time and the above control will not work. Indeed in
this case, there is a direct pole-zero cancellation and the behavior of unstable
state is hidden in the input-output (external) behavior. Hence to design
satisfactory control system, one need to keep track of internal (all the states’)
behavior. If all states are stable, such a system is called internally stable.

13.2 Controller Canonical Form

Theorem: Suppose (A, b) is controllable. Let

Py
PA
P= ,

P A

where

Pr=1[0---01][bAb --- A" 47"

Then the transformation z = Px leads to the controller canonical form

0 1 0 - 0 0
0 0 1 - 0 0
zZ= : : 2+ |u
0 0 0 1 0
| —Gn —Gpo1 —lp—2 —ay | 1]



where
xa(s) =det(sl — A)=s" +a1s" '+ +a,15+a, =0.
Proof: Notice that

21 = Pll’
and thus
1
0
21:P1:1;:P1A:1;—|—Plbu:P1Ax—|—[001] . uzPlA:I;:ZQ.
0
Therefore
1
ZQ:P1A$:P1A2$+P1Abu:P1A2$—|—[O01] 0 UZP1A2$223.
L 0 -
Continuing this process, we obtain
0]
by = PLAT 2 = DA™ e £ DAY b= PLAM e 0 - 01) | g | u
1
L 0 -
= PA 2 = 2,.
Moreover by Cayley-Hamilton theorem,
Z'n = PlAn_lj? = PlAnl' + PlA”_lbu
0
= P(—a, —a, 1 A— —a; A" Nz +[0 - 01] 0 u
1
= —a,Pir—a, {PLAx— —a1 PLA" Yo 4u = —a, 21— a,_129— - —a12, +u.

a
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13.3 Pole Placement

If (A, b) is controllable, the n poles of the feedback system can be located in

any places of the complex plane through static state feedback. Such place-

ment of poles in any desired locations is called pole placement. In this section

we consider internal stabilization of the system through the pole placement.
Consider the static state feedback control law:

u=—klz.
Then the closed system becomes
&= Ax — bkTx = (A— bkT )z
where k = [k, k,_1 -+ k]T.
In this section we present two different methods of pole placement. For
this let {p;}7_; be the set of desired poles. Define
O=(s—p)(s—p2)---(s—pu) =5"+ars" "+ + ay, = xals).

Bass-Gura Formula:
A way to achieve the pole placement is to first transform the system

representation into controller form as shown in the previous section. Then
the feedback system is

0 1 0 0 ]
0 0 1 0
z = : - - : : z
0 0 0 1
| —an =k —ap =k —an —kj —ay — ki |

and the characteristic equation is
s" 4 (ay + k)" 4 (ag + kS)s" TP+ (ag + kS)s" TP+ -+ (a, + ES) = 0.
Hence it is clear that the controller gain must be

K=a—a
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where a = [a, a1 -+ o]t and @ = [a, a,_1 -+ a1]T. Notice that
u=—(k)'2=—(k)" Puz.
Hence the feedback gain must be
' = (a—a)'P.

This formula is called the Bass-Gura formula.
Ackermann’s Formula

Notice that by Cayley-Hamilton theorem,
Pixo(A)z = LA s + oy LA "2 + ay LAY P2 + - 4 o, P
= —a PLA" e —as PLAY 20— - —a, Pla+ oy PLAY Y et PLAT 24 - 4o, Py
= (a1 —a))PLA" "2+ (g —ag) LA 2 4+ -+ (e, — an) Pr
= ko kSzpy kS = (B 2 = ke

Hence,

' = Pixo(A).

This formula is called the Ackermann’s formula.
Ex: Consider the BIBO unstable system described by

SRS

xa(s) = s*.

Notice that

Suppose we want to locate the closed loop system poles at —2. Then
Xal($) = 24+ 4s+ 4.

Moreover

0 1

[bAb]:ll 0

] = [b Ab™

and thus

Plz[()l][(l) (1)]:[10].
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Using Bass-Gura formula,

kT:[M]lPIjIA]:[M]H (1)]:[44].

Using Ackermann’s formula,

kT:PIXa(A):[IO](lg (1)]2+4[8 é]—kﬁll(l) (1)])

:[10][3 ﬂ:[m.
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Chapter 14

Observer and Output Feedback

Asymptotic Observer (State Estimator)
Goal: Based on the input-output data, find the state estimate that con-
verges to the actual state.
Asymptotic Observer (State Estimator):
@(t) = AZ(t) + bu(t) + L(5(1) — y(1))
where the predicted output §(¢) = 3 (#).
U
E(t) = (A+1eD)E(t) + bu(t) — ly(1).

Notice that the observer gives the state estimate & from the I/O pair (u,y).
Define state estimation error

e(t) = #(t) — (1)

U
¢(t) = (A + 1eD)e(t),

Notice that the characteristic equation of A + Ic! is the same as that of
AT + ¢I”. Hence similar to the pole placement case, the poles associated
with observer can be arbitrarily assigned on any location in the complex
plane if (¢, A) is observable. Indeed [ that results in the desired poles can
be computed from Bass-Gura or Ackermann’s formula where (AT, ¢) is used

instead of (A, b).
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Output Feedback

vV + u y
@, [A,B,C,D] >
+
State X
Feedback Observer

The state representation of the closed loop:

Lot )= e [ ][]0

o =ira| 7).
Notice that

A+bkT bk

det[ 0 A+l

] = det(A 4+ bkT)det(A + bkT).

Hence we have the following separation principle.
Separation Principle: the family of poles of the closed loop system is the
union of those of state feedback system and state estimator.
Thanks to the separation principle, the static state feedback controller
and asymptotic observer can be designed separately.
Notice that
G(s) = T(sI — A—bkT) ™0,

Hence the dynamics of observer doesn’t show up in the external behavior
due to the assumption that e(0) = 0.
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