Rapid Setup of Shop-floor System Control in a Flexible CIM

System

Han-Shen Huang and Li-Chen Fu
Dept. of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.

hshuan

Abstract

In order to deal with demands for various
products, flexible CIM systems are required to
evade building dedicated systems for different
products. However, the variety of products
sometimes exceeds the flexibility of production
systems, and new systems are inevitably needed.
In the paper, we discuss the architecture of a
flexible CIM system under which CIM
components are well-modularized firstly. After
that, EMFAK(Event-driven = Multi-tasking
Flexible Automation Kernel) is proposed to
speed up the construction of shop-floor system
control. At last, a flexible CIM system using
EMFAK is described to show how to apply it to
a real flexible CIM system.

1 Introduction

In order to deal with demands for various
products, flexible CIM systems are required to
evade building dedicated systems for different
products. However, the variety of products
sometimes exceeds the flexibility of production
systems, and new systems are inevitably needed.
Under such circumstances, it is desirable that
new systems can be created rapidly or be
transformed from the old ones easily.
Information technology can be applied on
shop-floor system control to facilitate
construction of new control systems. To solve
the above situation, we developed
EMFAK(Event-driven Multi-tasking Flexible
Automation Kernel) to facilitate the job of
building a new automation kernel, which is so-
called system control[1]. The term control in this
paper means the task of providing an
information sharing and processing platform for
all components, and coordinating them to make

lover.csie.ntu.edu.tw , lichen@csie.ntu.edu.tw

the whole system work properly[2].

First, we discuss the architecture of a flexible
CIM system under which CIM components are
well-modularized. In addition, information
processing and sharing among components are
defined in this architecture. Then, EMFAK is
proposed to speed up the construction of shop-
floor system control. At last, a flexible CIM
system using EMFAK is described to show how
to apply it to a real flexible CIM system.

2 Architecture

The architecture of a flexible CIM system
consists of three kinds of component, that is,
AXK(Automation Kernel), scheduler, and device,
as shown in Fig 1. The information sharing
among schedulers and devices is through the AK,
which can be built by EMFAK. Some special
properties can be derived from this architecture.
First, a scheduler becomes an easily replaceable
module. Second, more than one scheduler is
allowed in a CIM system to share the scheduling
jobs because the information management and
device conflict prevention are both handled by

the AK[3][4][5]-
Scheduler l

| Scheduler J Fcheduler |
[I
Automation Kernel

‘ Device | rDevice J

[Device I r[)eviceJ

Figure 1: Architecture of a flexible CIM system

3 Automation Kernel and Device
Model

It is important and practical to perform analysis
on flexible CIM systems in detail before actually
building them. Moreover, analysis of such
systems is helpful in designing the automation
kernel and reusable models for system devices.
To exemplify this point, let us consider an
example system in the following. After that, we
propose an automation kernel and device models
for the system.

3.1 Example System Specification

The example system produces two kinds of
products simultaneously. There are two robot
arms, one conveyor belt, one part loading device,
one rotary buffer, and a system controller. The
conveyor belt is equipped with two pairs of
optical switches and a camera for identifying the
position and orientation of incoming parts. Each
robot arm has an eye-in-hand camera and several
assembly sites for assembly jobs. Their detailed
functions are described in the following:

1. Robot arm: The two robot arms in the
example system perform the same jobs. They
can pick up parts from the conveyor belt,
assemble them, and put them on the rotary
buffer if necessary. Also, the robot arms can
pick up parts from the rotary buffer.

2. Conveyor belt: The conveyor belt transport
parts into the example system. Equipped with
a camera and optical switches, it can provide
a guide to robot arms how to unload parts
from the conveyor belt.

3. Part loading device: The part loading device
loads parts onto the conveyor belt when there
is a robot arm available for assembly jobs.

4. Rotary buffer: The rotary buffer is a
temporary storage for parts. Both robot arms
can reach the buffer.

5. System controller: The system controller is in
charge of the management of all other devices
in the example system.

The communication among various devices
of the system is via computer networks. If a
device does not have any network interface, an
interface translator is used as a bridge to the
network. After knowing the jobs of the devices,
we can develop device models for them.

3.2 Automation Kernel for Example
System

It is time to demonstrate how to use an

automation kernel (AK) as a system controller in
a flexible automated production system. AK has
to know the devices in the current environment,
and how to process the system events. In our
design, all events generated in the system are
passed to AK first. When AK receives an event,
it invokes a scheduler to process the event, as
shown in Fig 2. According to the event handling
routines and device models defined in AK, the
scheduler chooses a routine and several needed
devices. In event handling routines, an event is
divided into several commands for the essential
devices. There may be several steps in an event
handling routine, and communication among
devices is unavoidable. AK takes full
responsibility in device communication and

coordination.

Automation Kernel

T]

Event Command Command

’ 'DeviceJ \ Device H Device |

Figure 2: Translation of an event to commands

For our purpose, the AK is designed to receive

the following events from other devices:

1. Registration and Dismissal: Registration and
Dismissal events bring a device into and out
of the control of AK. They are submitted with
the type and name of the device. On-line
registration and dismissal allow dynamic
reconfiguration of the whole production
system.

2. Part_on_Belt: The event informs AK that
there is a part coming on the conveyor belt.
Since the conveyor belt is equipped with a
camera, the ID and orientation of the part are
also obtained and passed to AK.

3. Result Report. The event is issued by
devices to indicate whether they have
processed a command successfully or not.
The identity of the command and the result
messages are also needed. The ID of a device
is not necessary for two reasons. The first
reason is that AK keeps track of command
IDs and the corresponding receivers. The
second is we take it into consideration that if
a device can handle more than one command
at the same time, we inevitably need the IDs
of each command to distinguish them.

After AK receives an event, it passes the

event to its scheduler. In our design, a scheduler
is a plug-and-play part of AK. AK can have
more than one scheduler at its disposal. The
scheduler selects the correct event handling
routine and fills the needed parameters. After
that, AK maintains the executing routines and
issues commands to the related devices. A robot
arm in the system receives the following
commands from AK:

1. Unload_from_Belr. This command notifies a
robot arm to unload a part from a conveyor
belt. Two parameters, the ID and orientation
of the part, are needed.

2. Assembly: When a robot arm receives this
command, it performs the assembly job
according to the parameters. The parameters
are the site number and the part ID.

3. Load_onto_Buffer and
Unload_from_Buffer: These two commands
order a robot arm to load a part onto buffer
and unload from buffer. When a robot arm
receives Load_onto_Buffer with a site
number, it picks up the part on the site, and
then moves to the buffer. If no site number is
specified, the robot arm moves with the part
that is already grabbed in its hand. As for
Unload_from_Buffer, the robot arm goes to
the buffer directly. It should be noted that the
loading and unloading operations have not
been finished yet because there must be
synchronization between the robot arm and
the buffer. For example, if a part is to be
unloaded, the robot arm has to move to the
loading/unloading port, and the buffer has to
prepare the right part over there. The actions
of the robot arm and buffer are
simultaneously to save time. AK waits for the
successful reports from the two devices, and
issue the following command to the robot
arm.

4. Synchronized: When a robot arm receives the
command, it knows synchronization is
finished. Then it can proceed with the
previous command.

AK sends the following commands to the
buffer, that is,

1. Unloading and Loading: The two commands
tell the buffer to prepare a part, or an empty
space to the loading/unloading port. The part
ID and port ID are needed in the Unloading
command. There is more than one port
because the buffer serves two robot arms in
our system. In the Loading command, only
port ID is required because the buffer always
finds an empty space for the robot arm.

The part loader receives only one command

from AK, that is,

1. Load_Part: When a part loader receives the
command, it loads a part onto the conveyor
belt.

After we introduce the events and commands,
let us take the event Part_on_Belt as an example,
as illustrated in Fig 3. Suppose that the names of
the two robot arms are Adept and CRS. The
conveyor belt sends Part_on_Belt to AK when a
part comes. AK finds that Adept is doing
assembly operation at that moment, whereas
CRS is available. Hence the Part _on_Belt
handling routine is called. “CRS” and the part
information are the parameters for the routine.
According to the routine, AK checks if the part
can be used immediately. If not, AK orders CRS
to put it on the buffer. Assume that CRS no
assembly operation can be taken.

Conveyor Belt
|

Event: Part_on_Belt

Y
Automation Kernel

|

Command: Unload_from_Belt

Event: Success

Figure 3: Event processing example

After the above inspection, AK sends
Unload_from_Belt to CRS, waiting for the
success report. After that, AK issues
Load_onto_Buffer to CRS, and Loading to the
buffer. When the two actions are finished, AK
sends Synchronized to CRS, and CRS puts the
part onto the buffer, as shown in Fig 4.

4{ Automation Kernel h

1.Command:
Load_onto_Buffer

1.Command:

3.Command: Loading

Synchronized

2.Event: Succg

Figure 4: Synchronization example

2.Event: Suct

3.3 Device Models for Example System

In EMFAK, we use finite state automata to
model devices. The states in the diagram stand
for the current state of a device, and the links
represent the state transition when commands
are received or commands are finished. Let us
take the model of the rotary buffer as our
illustrating example. Fig. 5 shows the model,
which is derived straightly from the description
of the previous subsection.

Successful Registration

Stand By

ReceiveT Receive:

Unloadine Loading
Send: Send:

Result Resu

Unioad
Process

Load
Process

Figure 5: Device model of the rotary buffer in
the example system

Since the rotary buffer serves one robot
arm at a time, we can simplify the buffer model,
as shown in Fig 6. The simplified device model
illustrates two things. The first is that AK sends
a command to a device and waits for a result
report. It is not required for AK to know how a
device finishes the mission. The second is that
AK knows how many jobs a device can handle
at a time. Suppose we have a more advanced
buffer that can serve at most two robot arms
simultaneously. The simplified device model can
still be easily obtained in a systematic way, as
shown in Fig 7. The state “Command Processing
II” means that the device is handling two
commands at a time.

From the example, it is clear that if we
have a device that can handle » jobs at a time,
there will be » “Command Processing” states.

Although the device model seems to grow larger
and larger in proportion to », it does not matter
to EMFAK. Since the device model grows in
such a systematic way, EMFAK only needs to
keep track of the number of commands which a
device is executing.

N

Dismissed
S \

Successful Registration
A
. Receive:
- Command

Stand By \ Command

. Processing
Send:
Result

Figure 6: Simplified device model of the rotary
buffer

Command
Processing

Successful Registratior Receive: Send:
Command Result

Receive:
Command

Command

Stand By Processing

Send:
Result

Figure 7: Simplified model for device that can
handle at most two commands simultaneously

There is a special case for the modeling
method. If a device can handle commands more
than EMFAK can dispatch to it, we can model it
in a more convenient way. Now that the number
of the commands never exceeds the capability of
the device in some environment, we can deem it
a device that can handle infinite commands. It is
not necessary any more to know how many jobs
it is handling, and hence the device model can be
depicted as in Fig 8.

The main purpose of the above example is
to find out a way to build EMFAK. According to
the discussion, we can retrieve the content of
event handling routines and device models to
form a programmable part for AK. In the next
section, we take a further step toward the
implementation of EMFAK.

Stand By
Successful and
Registratiop, Command

Processing

Send:
Result

Figure 8: Special device model for a powerful
device

4 EMFAK(Event-driven Multi-tasking

Flexible Automation Kernel)

EMFAK is a programmable AK that can be used
to facilitate the setup of system control. The
organization of EMFAK is depicted in Fig 9.
There are four components that make EMFAK
effective, that is, EMFAK specification, device
manager, task manager, and scheduler. The
functions of these components are described
below:

1. EMFAK Specification: EMFAK specification
is a file that describes the programmable
portions of EMFAK, such as event handling
routines and device models. To let EMFAK
be able to run, EMFAK specification shall be
referred to by all other components.

2. Device Manager: When a device is registered,
the device manager creates a device handler
for it. A device handler maintain the
information of the corresponding device and
provides a common interface for Task
Manager to communicate with a device.

3. Task Manager: When an event handling
routine is being executed, Task Manager
creates a task to keep track of the current
status of the routine. Task Manager has the
ability of multi-tasking. If there is more than
one task executable at a time, Task Manager
selects the one with the highest priority to
execute. If two or more tasks have the same
priority, they are to be executed in turn.
Multi-level queue method is wused to
implement multi-tasking ability[6].

4. Scheduler : 1t is a plug and play component
in EMFAK. The communication between a
scheduler and Task Manager is via computer
networks, too. A scheduler must know the
protocol with Task Manager, and the syntax
of EMFAK Specification. Certainly, it should

Receive
Comman

have domain knowledge of the system
EMFAK controls.

In the following section, we explore a real
example to see more details about using
EMFAK.

| EMFAK Components |
| !
Scheduler
| Task » (Plug and Play '
| Manager Component) |
[
| , f
| Device EMFAK |
| Manager Specification ’

Device Device Device Device

Figure 9: Organization of EMFAK

5 Experiment

In this section, we build an example CIM system
to show how to set up a real system using
EMFAK. The functionality of the system is
described in the previous section.

EMFAK is a program that runs on UNIX.
The communication between EMFAK and other
devices is through computer networks.

Besides EMFAK, there are two robot arms,
one buffer, one conveyor belt, and one part
loader in the example. In this experiment, none
of the devices has network interfaces. Hence,
each of them is equipped with an interface
translator. The two robot arms have RS-232
ports. The buffer and part loader only have
discrete one-bit signal I/O ports. The conveyor
belt has an optical switch and a camera. We
allocate one PC for each robot arms, another PC
with a special /O card to deal with the buffer
and part loader, and another for the conveyor
belt to send the information of incoming parts to
EMFAK.

The structure of the example system is
shown in Fig 10.

6 Conclusion

We have introduced a way to set up system
control rapidly. EMFAK provides an easy way to
build a system controller based on the device

models. At last, we present an example to show

how EMFAK can be applied to a real system.

[7] Liu, Song-Han and Li-Chen Fu, “Multi-agent

Based Control Kemel for Flexible
Automated Production System”, in
Proceeding of IEEE International Conference

EMFAK on Robotics and Automation, 1998.
Sparc 10
workstation
Interface
Translator RS232— Robc;sArm
Pentium PC
Interface
Translator RS22—{ g cﬁ)‘:}?’;rm
Pentium PC
Etherne Intertace Discrete
Translator Sional] Part Loader
Pentium PC g
Discrete
Signal] Buffer
Interface Discrete
Translator Signal COrgveyor'BeIt
and & (wﬂ_h optical
Part Recognition | Camera s:'at:‘heraa';d
Pentium PC Dataline

Figure 10: Structure of the experiment system

References

[1]1L. Jann and L.-C. Fu, “Flexible control
system for robot assembly automation”, in
Proceeding of IEEE International Symposium
on Assembly and Task Planning, pp. 286-292,
1995.

[2] S. B. Joshe, E. G. Mettala, J. S. Smith, and R.
A. Wysk, “Formal models for control of
flexible manufacturing cells: Physical and
system model”, IEEE TIransaction on
Robotics and Automation, vol. 11, pp. 558-
570, Aug. 1995.

[3]L. Lin, M. Wakabayashi, and S. Adiga,
“Object-oriented modeling and
implementation of control software for a
robotic flexible manufacturing cell”,
Robotics and Computer-Integrated
Manufacturing, vol. 11, no. 1, pp. 1-12,
1994.

[4] D. J. Miller and R. C. Lennox, “An object-
oriented environment for robot system
architectures”, IEEE Control Systems, vol. 11,
no. 2, pp. 14-23, 1991.

[5] Y. Jeon, J. Park, I. Song, Y.-J. Cho, and S.-R.
Oh, “An object-oriented implementation of
behavior-based control architecture”, in
IEEE Int. Conf. On Robotics and Automation,
pp- 706-711, 1996.

[6] A. Sillberschatz and P. B. Galvin, Operating
System Concepts. Addison Wesley, 1994.

