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Chapter 1

Introduction

To analyze and solve the science and engineering problems in a systematic
way, they need to be converted into mathematical problems. The underly-
ing physical, chemical or biological system is written in mathematical terms
through mathematical modeling and the problem statement is translated into
mathematical terms through mathematical formulation of the problem. In
this lecture the most general mathematical framework for the analysis and
solution of science and engineering problems will be presented with special
emphasis on the application to optimization problems.



Chapter 2

Linear Space

Linear (or Vector) Space X over a Scalar Field § (R", C"):

algebraic structure defined by the following axioms:
axioms for linear space

e Addition
+: X XX =X (z,y) = a+y;

1. Associative

(r+y)+z=a+(y+2)

2. Commutative
r+y=y—+x

3. didentity 0 such that
r+0=0+z=2x
4. Jinverse —z such that
r+(—2)=0
e Scalar Multiplication:
i Sx X = X:(a,2) > ax;

1. Associative

(ab)x = a(bx)

set, with the



e Distributive law:

(a + b)x = ax + bx
alx +y)=ax+ ay
Linear Space Examples

Canonical Example I:
1

S™: n-tuples | : | of scalars

Ty,
Addition and Scalar Multiplication:

T+ axy
rT+y= : axr =
Ex: R™, C*
Canonical Example II:

Function space: all functions f(d) from a domain D to X
Addition and Scalar Multiplication

(f +9)(d) = f(d)+g(d)
(af)(d) = af(d).

Ex 1: Set of all sequences (functions from I to ™)
Ex 2: Cla, b] Set of continuous functions on [a, b].
Product Space X x Y: linear space of (x,y) with addition and scalar
Multiplication:
(z1,91) + (w2,92) = (21 + 22,91 + 12)
a(w,y) = (az, ay).
Subspace: A subset M of linear space X such that

ar+ pye M, Ve,ye M, Va,f €S.

Notice that a subspace is a linear space by itself.

Ex 1: Let X = R2.



{(0,0}, any straight line and R? are subspaces.

{(x1,29) : 29 = 21} U {(21,22) : 22 = —x1} is not a subspace.

Ex 2: Let X = Cla,b].

M ={f¢€ X : f(a) =0}, subspace

N ={f € X: f(b) =1}, not subspace

Fact: Let C be a collection of subspaces. Then Ny;eeM is a subspace.

Proof: Let o, € § and z,y € NyecM. Then ax + Py € M for all
M € C. Hence, az + Sy € NpyrecM. O

Fact: Let M and N be subspaces of X. Then M+ N ={z:z=a+y,z €
M,y € N} is a subspace.

Linear Independence and Dimension

Linear Combination: Let a3 € § and z; € X. Then

Y=o+ -+ oty

is called a linear combination.

Fact: The set of all linear combinations of a set S of vectors is a subspace.
Indeed it is the smallest subspace containing S and is called the subspace
generated by S, denoted span(5).

Linear Variety: V = x¢o + M where o € X and M is a subspace.

Ex: Let X = Cla,b] and M ={f € X : f(a) =0}.



N={feX: fla)=1} =1+ M, linear variety.
Def.: A set S of vectors is linearly dependent if there exists a € S such
that
a € span(S — {a}).

Otherwise it is called linearly independent.

Def.: A linear space is said to be finite dimensional if there exists a
finite subset of vectors S such that span(S) = X. The number of linearly
independent vectors in S is called the dimension of the space.

Notice that R"™ and C” are finite dimensional whereas the sequence space
and Cla, b] are infinite dimensional.

Fact: Let S and S be two linearly independent subset of vectors such
that span(S) = Span(g) = X. Then S and S contain the same number of
elements (i.e. the dimension is unique).

Proof: Let S = {xy,---,2,} and S = {y1,-**,Ym}. Suppose m > n
WLOG. Notice that .

= Z ATk
k=1

Assume oy # 0 WLOG. Then
1 1 &
T = a_lyl - Oé_1 kZ::zOékl'k-

Hence, span{yi,zq, -+, 2,} = X. Then

Yo = Biyr + Z QpTp.
k=2
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Assume &y # 0 WLOG. Then
1 1

Y2 — %
(8% o

1 &
By — &_Zakl’k

2 k=3

To =
2

Hence, Span{y1, Yo, T3, 751?n} = X.

span{y, -, y,} = X and the fact follows.
Convex Sets and Cones
A set C is said to be convex if

ar+ (1 —a)y e C, Yael0,1], z,y € C.

Convex Nonconvex

Fact: Let C be a convex set. Then
e a(' is a convex set.
o If C', D are convex, sois C' 4+ D.

Proof: i) Let z,y € aC. Then %, % € (.

a’

oz:z;—l—(l—oz)yza(ozf—l—(l—oz)g) c aC.
a a

eC

ii) left as an exercise.



Fact: Let {C,}aec be a collection of convex sets. Then N,ecC, is a
convex set.

Proof: Suppose =,y € NyecCy. Then z,y € C,, for all « € C. Hence,
ar + (1 —a)y € C,, for all o € C. Therefore, ax + (1 — @)y € NpecCs. O

The convex hull (or convex cover) of a set S is the smallest convex set
containing S and is denoted co(.5).

Figure 2.4 Convex hulls

Since a linear space is convex, a subset of a linear space is always contained
in a convex set.
Let C be the set of all convex set containing S. Then

co(S) = NeecC.
A set (' is said to be a cone with vertex at the origin if

ar € (', Ya>0, x €.

(a) ) (c)
Figure 2.5 Cones



Chapter 3

Topological Spaces

A topology of a linear space X is a family of subsets of X that contains ()
and X and is closed under arbitrary unions and finite intersections.

A linear space with a topology is called a topological linear space.

Notice that a linear space has many different topology.

Ex: 7 = {0, X} (trivial topology)

P(X)={5:5C X} (discrete topology)

Different topology defines different topological space.

Let 77 and 73 be two different topology of X. Then if 73 C 73, 77 is said
to be weaker (or coarser) than 73, or 75 is said to be stronger (or finer) than
71

Notice that the discrete topology is the strongest topology a linear space
can have whereas the trivial topology is the weakest.

The elements in a topology are called open sets whereas their comple-
ments are called closed sets.

The union of all open sets contained in a set S is called its interior (de-

noted as §) whereas the intersection of all closed sets containing the set is
called its closure (denoted as S). The difference between the closure and

interior is called the boundary (95 = S\ §)

Fact: A set S is closed iff S = S.

Def.: A set S is called dense if S = X.

Def.: A topological space is called separable if it has a countable dense
subset.

Def.: A set is compact if every open cover has a finite subcover (Heine-



Borel property).

An operator (transformation or mapping) 7' from a subset D of a linear
space X into a linear space Y is a rule that associates every elements in D
to an element of Y.

Let A be an operator from a topological space X to a topological space
Y. The mapping A is called continuous if the inverse image of an open set

in Y is an open set in X.



Chapter 4

Metric and Complete Metric
Spaces

A metric (or distance function) on X is a function from X x X — R such
that for all x,y,z € X,

1. d(x,y) >0

2. d(:z; y)=0iff a =y
dla.y) = d(y.)

4. d(x,y) < d(x,z) + d(z,y) (Triangular Inequality)

A linear space equipped with a metric is called a metric space.
Notice that a linear space has many different metric.

Ex: Consider R.

d(x,y) = |z —y|

d(z,y) = {(1) ii ; Z (discrete metric)
Different metric defines different metric space.
Metric Space Examples

Ex 1: R", C" with the metric

y) = o =yl 4+ e —

Ex 2: Cla, b] = the set of all continuous functions on [a, b] with the metric

d(w,y) = max |(t) —y(1)].
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Notice that the triangular inequality follows from the fact:

may |o(t) = y(t)] < max [#(1) = 2(1)] max |=() - y(1)

Ex 3: Cla, b] with the metric

)= [ elt) — y()lar.

Yoo |l < oo if 1 <p<oo

Ex 4: [, = the set of all sequences such that .
Wrgyn 23] < 00 i p=co

d(z,y) = { (Z}il |$j—yj|p)p ifl<p<oo

SUP<jcoo |75 — y;|  ifp =00

Ex 5: ¢p = the set of all sequences that converges to zero

d(z,y) = sup lz; — w5l
SIe0

Notice that ¢y C .
Ex 6: L,[a,b] = the set of all measurable (integrable in the sense of
JP|e(t)|pdt < o ifl <p<oo

Lebesque) functions on [a, b] such that :
esssup,<<p |2(t)] < oo if p=oco

ﬂ%w:{(ﬁuw—ywmm% f1<p<oo
€55 SUP,<i<h lz(t) —y(t)| ifp=oo

Ex 7: H,(D) = the set of all analytic functions on D such that
Ip le(t)]Pdt < oo ifl <p<oo
esssup,ep |2(t)] < oo if p= oo

ﬂ%w:{Oﬂﬂﬂ—MmWO% if1<p<oo
esssup,ep |z(t) —y(t)| if p=oo

Open and Closed Sets

e Open Ball: B, (xo) ={x:d(x,z0) <1}
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e Closed Ball: B, (x¢) = {x : d(x,20) <r}
e Sphere: S, (x9) = {x: d(x,20) =1}

A set is called open if it contains an open ball (also called a neighborhood)
about each of its points. A set is called closed if its complement is open.
Fact: Let X be a metric space.

1. § and X are open.
2. Any union of open sets is open.
3. Any finite intersection of open sets is open.

Proof: 1)  has no elements and thus is open. X is clearly open.
2) Let @ € UyeaO, where O, is open. Then there exists a’ € A such that

x € O,. This implies there exists r > 0 such that éT (2) C Ou C UueaOy.

3) Let x € ﬂfvlei where O; is open. Then there exists r; > 0 such that
é” (z) C O;. Let r = minj<;<n ri. Then éT (¢) CO; foralle=1,--- N.
Hence éT (x) C ﬂfVZIOZ'. O

From this fact, the set of all open sets defines a topology. Hence, a metric
space is a topological space but not vice versa. Hence all the properties of
topological spaces carry over to the metric spaces. A topology that can be
generated from a metric is called metrizable.

Ex: Consider R equipped with the discrete metric. Suppose S be a subset

of R. Forall x € S, é% () = {x} € 5. Hence, all the subsets of R are open.
To this end, the discrete metric defines the discrete topology.

ée (x0) is called the e neighborhood of 2. Moreover a set containing an
e neighborhood of zg is called the neighborhood of xg.

Fact: The interior of a set M is the set of all points for which M is its
neighborhood.

A point zg is called a limit point of a set M if every neighborhood of zq
contains a point in M.

Fact: The closure of a set M is the set of all points that is a limit point
of M (Otherwise zq € M¢).

Fact: A subset M of a metric space X is dense iff every point in X is a
limit point in M.
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Ex: From the Taylor’s theorem, the set of polynomials in a space of
bounded and continuous functions on a compact set is a dense subset.

Fact: A metric space X is separable iff there exists a countable set M
such that every point in X is a limit point in M.

Fact: Let X and Y be metric spaces. A mapping T : X — Y is continuous
iff, at each point xg of X, for every € > 0 there exists 6 > 0 such that

dx(x,x0) < 6 implies dy (Tx,Tx) < e.

Proof: (<) Let S C Y be open and Sy its inverse image. If So = ), then
it is open. Suppose Sy # (). For any z¢ € S, let yo = Txg. Since S is open,
it contains an e neighborhood N of yy. Then zq has a é neighborhood N
which is mapped into N. Since N C S, we have Ny C Sy. Hence, Sy is open.

(=) For every x9 € X and any e neighborhood N of Tzq, the inverse
image Ny of N is open and contains z¢. Hence Ny contains a ¢ neighborhood
of ¢y whose image is contained in N. O

Convergence

A sequence in a metric space X is said to converge or to be convergent if
there exists an @ € X (called a limit) such that

nh_}rgo d(z,x,) =0.

Fact: A sequence is convergent iff for every e > 0 there exists N such

that
d(z,x,) <€, ¥n>N.

A nonempty set is bounded if

sup d(z,y) < oo.
zyeM

Fact:
1. A convergent sequence is bounded and its limit point is unique.
2. f 2, — 2 and y, — y in X, then d(z,,y,) — d(z,y).

Proof: 1) Suppose x, — . Let ¢ = 1. Then there exists N such that
d(x,,x) < eforalln > N. Let a = max{d(xy,2),---,d(xy,2)}. Then

d(x,, ) < max{l,a}, VYn>1
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and thus the sequence is bounded.
Suppose x,, — x and x, — z. Then

0 <d(z,z) <d(x,x,)+d(x,,z) —0

and thus z = 2.
2) Notice that

A, y) < d(xp, ) + d(z,y) + d(y, yn).

Hence
d(xn,yn) — d(x,y) < d(xn,2) + d(y, yn)-

Similarly
d(z,y) — d(xn, yn) < d(@p, ) + d(y, yn).

To this end, as n — oo,

|d(@n, yn) — d(z,y)| < d(xn, @) + d(y,y,) — 0.

Fact: Let M be the closure of a nonempty set M. Then
1. 2 € M iff there exists a sequence {x,} in M such that z, — .
2. M is closed iff x, € M and x, — x implies € M.

Proof: 1) (=) If + € M, then pick the sequence {x,x,z,---}. Otherwise
it is an accumulation point of M. Hence for each n = 1,2, -+, B1(x) contains
an z, € M and thus =z, — =z. !

(<) x € M or every neighborhood of x contains x,, # x. Hence z is an
accumulation point of M and thus = € M.

2) follows from the fact that M is closed iff M = M. O

Hiene-Borel Theorem: A subset M of a metric space X is compact iff
every sequence in M has a convergent subsequence with its limit in M.

Proof: See any real analysis book. a

Fact: A compact subset M of a metric space X is closed and bounded
but not vice versa. However, the converse is true for any finite dimensional
X.

Proof: See Kreyszig’s book (p.77). O
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Fact: Let X and Y be metric spaces. A mapping T : X — Y is continuous
at xg € X iff &, — x¢ implies T'x, — T'xo.
Proof: (=) For a given € > 0, there exists 6 > 0 such that

dx(x,x0) < 6 implies dy (Tx,Tx) < e.
Let x, — xg. Then there exists N such that for all n > N, we have
dx (@, x0) < 6.

Hence for all n > N,
dy (T, Txg) < e

(<) Suppose the contrary. Then there exists € > 0 such that for every
6 > 0 there exists  # xo such that

dx(x,x0) <6 but dy(Tx,Txg) > e

Pick 6 = % Then there exists , # x¢ such that
1
dx(xn,20) < — but dy(Twx,, Trg) > e
n

Clearly x, — 2o but Tx,, /& Tx (Contradiction!). a
Cauchy Sequence and Completeness
A sequence in a metric space is Cauchy if for every € > 0 there exists N
such that

d(xp,xm) <€ ¥Yn,m> N.
The space is complete if all its Cauchy sequences are convergent.
We now show that the converse is always true.
Fact: Every convergent sequence is Cauchy.
Proof: Suppose =, — x. Then for every € > 0 there exists N such that

d(z,,z) < =z VYn>N.

[N e

Hence,

A ) < dlarnsa) 4l 20) < 545 = c
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Fact: A subspace M of a complete metric space is complete iff M is closed
in X.

Proof: (=) For every # € M, there exists {x,} in M such that z, — .
Since {z,} is Cauchy and M is complete, it converges to the unique limit
reM.

(<) Let {,} is Cauchy in M. Then x, — = € X and thus z € M = M.

O
Examples of Complete Metric Spaces
Before we proceed to the examples, we present a lemma.
Lemma: Let {z;} be a sequence in R. Suppose
limsupz; = liminfz; =c € R.
[—o0 3>l l—o0 g2>1
Then {z;} is convergent and it limit is c.
Proof: For every € > 0, there exists /Ny such that
|supx; — ¢l <€, [ > Nj.
il
Hence,
r—c<e 1> Ny
Similarly for every e > 0, there exists N, such that
linfae; —cl<e, [> Ny
il
Hence,
Ty —cC> —¢ ZZNQ
Setting N = max{Ny, N2},
o) —¢| <e, [>N.
O

Ex1: R
Proof: Consider a Cauchy sequence {x;} in R. First notice that

lim inf z; < lim sup ;.
l—o0 g2>1 [—o0 >l
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Hence from the lemma, it suffices to show

lim inf «; > lim sup ;.
l—o0 g2>1 [—o0 >l

Now for every € > 0, there exists an N such that

d(xm,x)) < %, m, >N
and thus .
d(xn,x)) < 2’ [ > N.
Hence, zy + § and xny — § are upper and lower bounds for {&n,2ny1,---}

and thus for {z;, 41, -}, VI > N. Hence for all | > N,

€ .
ey — = <infa; <supz; <ay+ -
2 7 gzl >l
Therefore
supz; <infa; +¢
i izl
and thus

lim sup z; < lim inf 2; 4 €.
[—o0 i>i l—o0 g2>1

Since € can be arbitrarily small,

lim sup z; < lim inf x;.

[—o0 3>l l—o0 g2>1
O
Ex2: C
Ex 3: R”
Proof: Consider a Cauchy sequence {z; = [:1;5’) - 0T} in R™. Then

for every € > 0, there exists an NV such that

d(xm, ) = \/|:1;§m) — :z:gl)|2 +-+ |:1;7(1m) — :1:7(11)|2 <e m,l>N.
Then we have for y =1,---,n,

|:1;§m) — xgl)| <e m,l>N.

17



To this end, {:L';l)} is a Cauchy sequence in R and thus converges to a limit,
say ;. Let z = [z1 --+ 2,]T € R" Then

d(xm, ) <€, m>N.

Ex 4: C7

Ex 5 [

Proof: Consider a Cauchy sequence {z; = (:1;5’), :1;(21) )} in l. Then
for every € > 0, there exists an NV such that

d(xpm, 1) = sup |:1;§m) — xgl)| <e  m,l>N.
j

Hence for every j

|:1;§m) — xgl)| <e m,l>N.

To this end, {:L';l)} is a Cauchy sequence in R and thus converges to a limit,
say xj. Let # = (x1 ¥y ---). We now show that @ € [, and ¥} — x. As
[ — oo,

|$§m)—l’]‘|§6, m > N.

Since x; € [, there exists K; such that |:1;;l)| < K, for all j. Hence for every

J
2] < |oj — 2V 4 2V < e+ Ky, 1> N

Hence {x;} is a bounded sequence in R. Hence = € [,. Also

d(xm,x):sqp|x§m)—xj| <e, m>N.
j

Hence, z; — x. O
Ex 6: ¢
Ex 71,
Ex 8: Cla, b]
Proof: Consider a Cauchy sequence {z;} in C[a, b]. Then for every ¢ > 0,
there exists an N such that

- — >
d(@m,x) 51;1%)% lem(t) — ()] <€,  m,[>N.
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Hence for every ¢y € [a, b]
|em(to) — xi(to)] <€, m,l> N.

To this end, {x;(to)} is a Cauchy sequence in R and thus converges to a limit,
say x(tp). We now show that « € Cla,b] and 2; — x. As [ — oo,

— < >
51;1%)% |em(t) — ()| <e, m>N.

Hence for every ¢ € [a, b
lem(t) —2(t)| <e, m>N

and thus z; — z uniformly on [a,b]. From calculus, the limit of uniformly
converging sequence of continuous function is continuous. Hence, @ € Cla, b
and z; — . O

Ex 9: L,la,b]

Ex 10: H,(D)

Example of Incomplete Metric Spaces

Ex: C[0,1] with d(z,y) = fy (1) — y(t)|dt

Proof: Consider a sequence {x;};2,:

.

:.-T
Y3-
_t

R
3

N|= g ———————— ————

|

Notice that this sequence is Cauchy since for every € > 0,

11 /1 1N 11 1/1 1N 1 |
dama) = ~— 4 (~— ) e = (L) <= s
(2 21) 2m+<l m) 27 2(1 m)—z<6 vm, >
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We now show that the sequence doesn’t converge. Notice that

~fo ifrefo,y
““)_{1 if ¢ € [, 1]

where a; = % + % Hence for every a € Cla, b,
1
dav,a) = [ Ja(t) = y(0)|at
% a 1
:/|@mﬁ+/ﬂmﬂ—@mﬁ:/u—x@w.
0 % ay

Hence d(x;,x) — 0 implies each integral approaches to zero and, since x is
continuous, we should have

Hence the limit is not in C[a, b] and thus the sequence doesn’t converge. O
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Chapter 5

Normed and Banach Spaces

A norm (or size function) on X is a function from X — R such that for all
v,y € X,

L Jlal| 2 0

2. ||z]|=0iff 2 =0

3. |Jaz| = lal||z]

4l +yll < [zl + [ly]]

d(z,y) = |]x —y|| is a metric. However, a norm may not be obtained from
a metric.

Ex: Consider the discrete metric. Let

||| = d(z,0).

Then for  # 0 and « € {0,1}, a > 0,
lax|| = d(ax,0) =1 # a = af|z||.

Hence norm cannot be obtained from the discrete metric.

A linear space equipped with a norm is called a normed space and a
complete normed space is called a Banach space.

A subspace Y of a Banach space is complete iff Y is closed in X.

Notice that a normed space is a metric space but the converse is not true
in general. Hence all the properties of metric and topological spaces carry
over to the normed spaces.
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and thus the fact follows.

Notice that a linear space has many different norms.
Ex: Consider R2.

2]l = /21 + 3

[[€]loe = max{|a:], [wa]}

Different norm defines different normed space.

Fact: A norm is a continuous mapping.

Proof: From the triangular inequality, it holds that

Myl =1zl < lly — =]
Example of incomplete normed space: C[0,1] with ||z|| = f3 |=(¢)]dt.
Examples of Banach spaces:

Ex 1: R", C" with the p-norm:

ol = { (Exleaby? i1 <p <o

maxy |zx|  if p=o0

- ||z is called the Euclidean norm.

Holder’s Inequality: Let p,q € [1,00] such that 11_9 + 5 = 1. Then

n
> eyl <l llpllylly-
k=1

p = q = 2 case of Holder’s inequality is called Cauchy-Schwarz inequality.
Minkowski Inequality: If @,y € [, for p € [1, o],

e+ ylls < 2l + [ly]l,-
Ex 2: Cla, b] with

]l = max |2 (2)].
Ex 3: ¢y with
Jz]| = sup |z].
1<5<c0
Ex 4: [, with

1
- { (Rt} 12y <

SUpy <oy |75 if p = o0
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Holder’s Inequality: Let p,q € [1, 00] such that ;—) + 5 = 1. Suppose z € [,,
y € l,. Then

0
> eyl < Nllpllylly-
k=1

Proof: p = 1,00 cases are trivial. Let p € (1,00). Suppose a > 0,6 > 0.
Since log is concave, for any 0 < A < 1,

Aoga+ (1 — X)log b <log(Aa + (1 — A)b)
)

a1 < Xa+ (1= M\)b, Va,b> 0.

p q
a:("”') : b:(m') : )\:17 _a=t
Hpr Hqu p q
Then

1 P !
( E ) ( |y ) — PN < Ao+ (1—\b=- ( |z 4| ) 4z ( |k )
Hpr Hqu P Hpr q Hqu

and thus
sl x < 11 x L | 1 1 1
£ EL{ bt
iz \zlpllylly ) — = Le Nl a \lvll, P q
O

p = q = 2 case of Holder’s inequality is called Cauchy-Schwarz inequality.
Minkowski Inequality: If @,y € [, for p € [1, o],

Let

e+ ylls < 2l + [ly]l,-

Proof: Consider the finite sum:
Dol el <D0 lme +ykP el + 0 ok 4 vl P el
k=1 k=1 k=1
By Holder’s inequality,

S (1o +yk|p-1)qf [(kz |xk|p)% + (kz |yk|p) ] -

k=1

S e+ yl? <

k=1
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Since

11
~+-=1 = pteg=p; = pg—q=p,
P q
(Z - ym) < (Z |xk|p) s (2 |yk|p)
k=1 k=1 k=1
This holds for all n < oco. O

Ex 5: Lyla, b] with
e, = { (W le@pd)” i1 <p<oo
esssup, <<y |2(t)| if p=oc0
Holder’s Inequality:
b
| 1a®] < el ol

Minkowski Inequality:

e+ ylls < 2l + [ly]l,-

Ex 6: H,(D) with

b P 1% 3 <
2], = { (fa |z (t)] dt) ifl <p< oo ‘

esssup,ep |2(t)] ifp=o0

Holder’s Inequality:
1@y < Nl

Minkowski Inequality:

e+ ylls < 2l + [ly]l,-

Fact: Every finite dimensional normed space is complete and thus is a
Banach space.

Corollary: Every finite dimensional subspace Y of a normed space X
is complete. Since Y is contained in a larger finite dimensional and thus
complete subspace, it is closed in X (because Y is complete iff it is closed).

A norm || - || is said to be equivalent to another norm || - ||o if there exists
a, b such that

alello < llall < blall.
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Notice that equivalent norms defines the same topology.

Fact: On a finite dimensional space, any norm is equivalent to any other.
Existence of Optimal Solution

Theorem (Weierstrass): A continuous functional on a compact subset K
of a normed space X achieves a maximum on K.

Proof: Let M = sup,cx f(z). There exists a sequence {zj};2, such

that f(xx) — M. Since K is compact, there exists a converging subsequence

{xk,}. Let the limit of subsequence be & € K. Since f is continuous, f(xx,) —
M. 0
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Chapter 6

Inner Product and Hilbert
Spaces

An inner product on X is a function from X x X — R such that for all
$7 y7 < E X7

Loz 4y, 2) = (2,2) + (v, 2)
2. (az,y) = alz,y)

3. (z,y) = (y,2)

4. (z,2) >0

5. (z,2) =0iff 2 =

From the definition of inner product, it is clear that (x,x) is real and

(x,ay) = a{z,y).

A linear space equipped with an inner product is called an inner product
(or pre-Hilbert) space and a complete inner product space is called a Hilbert
space.

Def.: ||z|| = /(x, ).

Cauchy-Schwartz Inequality: Let X be an inner product space. For any
r,y € X,

[{z, ) < l[[[[ly]l-
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Proof: If y = 0, trivial. Suppose y # 0. Consider
0<(z—Ay,z—Ay) = (z,2) — (x,Ay) — Ay, 2) + (Ay, Ay).

Define A = {24

(y9)
(e,y) (2,y) (,y)| (2, y)|?
0< <$,$>— <y7y> <$,y>— <y7y> <y,l‘>—|— <y7y> <y7y> <$,$>—
Fact: ||z|| = 1/(x, ) is a norm.
Proof:

Iz +y|l* = (x +y, 2 +y) = (z,2) + (z,y) + (y.2) + (y,9)

< el + llyll” + 22yl = (]l + 1y 1)

Examples of Hilbert Spaces:

. R, C"
<$,y> = Z_;ngz
2. 1y .
<$,y> = Z_:xzyz
3. Lsla,b]
(e,9) = [ a(y(t)d.
4. Hy(D)

(o) = [ a(@p(tydt
Parallelogram law: In an inner product space,
Iz + Il + lle = yll* = 2f|2]| + 2]ly]I*.

Proof: Exercise.
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Continuity of Inner Product: If z, — = and y,, — y in an inner product

space, (Tn, yn) — (T, y).
Proof: Read the textbook. O

Orthogonality and Projection Theorems

Def.: Two elements of an inner product space are said to be orthogonal
each other if (x,y) = 0.

Def.: Let M be a subset of an inner product space X, and « € X. Then
x is said to be orthogonal to M if & L m for all m € M.

Pythagorean Theorem: If z Ly, ||z + y||* = ||z||* + ||ly||*-

Proof:

|z +y|* = (x+y,2+y) = (v,2) + 2Re (x,y) +{y,y) = ||=|* + |[y]|*.
——’
=0
O

Theorem: Let X be an inner product space. Let M be a linear subspace.
Let € X. Suppose there exists an elements mg € M such that

o = moll < e = mll, Vi € M.

Then mg is the unique minimum of ||z — m||. Moreover my is the unique
minimum of ||z — m/|| iff

(x —mg) L M.

Proof: To prove the theorem, it suffices to show

1) If mg is a minimum, (x — mg) L M.

2) (¥ — mg) L M implies myq is the unique minimum.

(1) (=) Suppose there exists m € M such that (¥ — mg,m) = 6 # 0.
WLOG assume ||m|| = 1. Define my = mg + ém. Then

e =l = fla = — dml|” = = mal|? — (& — o, Sr) — (S, @ — o) + |37

= ||z = moll” = [6]" < [lz — mo|*.

Hence, mg is not the minimum. This is a contradiction.
(2) For any m € M, Pythagorean theorem dictates that

Iz = mll* = llz = mo + mo — m |I* = ||z = mol|” + [Jmo — m|”
——

eM
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Hence ||@ — mo|| < ||@ — m|| for m # my. O
Nonexistence of mg: Let H = [, and

M = {x € [ with finite number of nonzero elements} (not closed) .

Consider z = {2%} We cannot find such my.
Theorem: Let X be a Hilbert space and M be a closed linear subspace.
Then for any x € X, there exists unique mgo € M such that

e = moll < lle —mll, Vme M.
Moreover, my is the unique minimum of ||a — m/|| iff
(x —mg) L M.

Proof: In view of the above theorem, it suffices to show the existence of
minimum. Let {m;} C M such that

_ = i — < .
e = mell = 8 = inf Jlz —m] < [Ja|
From the parallelogram law,
(2 = m5) = (2 = ma)|* + /(2 = my) + (2 —mi) | = 2l —m||* + 2/ — my|”.
Hence

Ik —mjl1* = 2]l — myl* + 2lle — mul|* = |22 = m; — my

my+my
A|lz— =5l

< 2|l — m;||? + 2||x — my|]* —46% — 0.

To this end, {my} is a Cauchy sequence. Since X is a Hilbert space, there
exists mg € X such that limg_.. mi = mg. Since M is closed, mg € M.
Moreover,
o = moll = Jim [lo = ]| = &
O

Orthogonal Complement

Def.: Let S be a subset of an inner product space H. The collection of
all vectors orthogonal to S is called the orthogonal complement of S denoted
by S*.

Fact: Let S, T be subsets of an inner product space H. Then
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1. St is a closed subspace.

2. S C S+

3. U ScT, T+He St

4, Sti+ = gL

5. If H is a Hilbert space, S+1 = W.

Proof: Exercise. O

Def.: Let H be a linear space and let M, N be two subspaces of H. Then
M @ N denotes the subspace given by M + N if M N N = {0}.

Theorem: Let H be a Hilbert space and M be its closed subspace. Then

I. H=Mo M*.
2. M = M+t

Proof: 1) It is clear that Ma@M* c H. Hence we only show H C MO M*.
By the projection theorem, for all @ € H, there exists mo € M such that
x—mog L M. Then let y = 2 — mo € M*. Hence x = y + mq.

2) From the above fact, it suffices to show M*+ C M. Suppose z €
Mt+subsetH. By the first part, © = m 4+ n where m € M C M+t and
n € Mt Thenn =2 —m & M+, However n € M+ and thus n = 0. O

Gram-Schmidt Orthonormalization

Fact: An orthogonal set S of nonzero vectors is also linearly independent.

Proof: If S is not linearly independent, there exists y € S such that

¥y = Z ArYk
k=1

where y; € S\ {y} for all k, and aj # 0 for some k. Then for all k,

0= (y,yx) = ax(Yr> Yi)-

Since y # 0, this is a contradiction. a

Theorem: Let {z}}72, be a linearly independent collection of vectors in
a Hilbert space H. There exists an orthonormal collection {e;}?2, of vectors
such that for all n,

Span{xk}ZZI = Span{ek}z:l'
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Proof: Let

1
€1 =
1]l
and for all k£ > 1,
k—1
zh=ap— Y (2, e)es,
=1
£
Cp = .
[ 2]
Then
vy = [lzaleq
and for all k£ > 1,
k—1
Ty = Z<$k7€i>ei + || 2k €x-
=1

Hence,
span{xy}i_y = span{ex}i_,.
Notice that
lexll = 1.
Moreover, X

<62761> = m<x2 - <$2,€1>€1,€1> = 0.

Assume that we have orthogonality of {e;}%_,. Then for s =1,---

1 k
(€rg1.€) =
|| =

Hence by induction, {eg}7_, is orthonormal.
Least Square Approximation

Consider {1, -, y,} of vectors in a Hilbert space H. Let M = span{yy,---

Question: Given = € H, find mg such that

o = moll < e = mll, Vi € M.

From the projection theorem, it suffices to find m¢ = >-""_; a;y; such that

(x —mg,m) =0, VYme M.

31

(@he1 = D _(Tre1.€)ej, ) = 0.

7yn}'



(@, y,) Za] (yj,y;) = r=1,---,n.
=1

Define
[G(ylv e 7yn)]ij - <y27 y]>

This matrix is called the normal matrix for y1,---,y,. Let

9y, yn) = detGyr, -+, yn).

Then it is clear that g(y1,---,yn) # 0 iff y1,- -, y, are linearly independent.

Assuming y1,- - -, y, are linearly independent
a1 <$, y1>
: :G_l(ylv"'vyn)
a, (2, yn)

Fact: Let x € H. Then

g(ylv"'vynvx)
91, Yn)

Proof: Read the textbook. O

Fourier Series

Def.: The series Y72, x; is said to converge if {3°7; a;} is convergent.

Theorem: Let {¢;}52, be an orthonormal sequence in a Hilbert space
H. Then the series 322, ase; converges iff "2, |a;|* converges. Moreover if
x =2, ae;, then a; = (x,¢;) that is called Fourier coefficient.

Proof: Notice that for n > m,

n m n
E a,e; — E a;e; = E a;e;.

Iz = mol| = &% =

i=m+1
Then
2
n n n n
dYooaieil| =D aen Y, ae)= Y lal’ (%)
i=m+1 i=m+1 i=m+1 i=m+1
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(<) From (x), {3°%, a;e;} is a Cauchy sequence since {3, |a;|*} is conver-
gent and thus is Cauchy. Since H is a Hilbert space, Y7 | a;e; converges.
(=) From (x), {327, |a;|*} is Cauchy since {3"" | a;e;} is convergent and
thus is Cauchy. Hence {3"", |a;|*} converges.
(Last Statement) By the continuity of inner product,

(w,eq) = lim (3 ajej,e;) = az.
j=1
O
Remark 1: As a consequence, all separable Hilbert spaces are ”analogous”
to 5. In other words, provided that {e;} is the set of orthonormal dense set,
=37 ae; € Hift {a; = (x,¢;)} € I5.
Ex: Let H = L,]0,1]. Let e; = sin(int) and f; = cos(ixt). Then {e;, fi}

is an orthonormal dense set in H. Hence for all f € H,

o0

f(t) = laie; + b fi]
=1
where a;, b; are Fourier coefficients.

Remark 2: If H is not separable, the orthogonal projection Y22 (x, ¢;)e;
of # € H on M = span{e;} has norm smaller than 2 and is the solution of
the minimum norm problem:

min ||z — m||.
meM

Ex: H = [3[0,00) needs inverse Fourier transform where uncountably
many sine and cosine are necessary.

Minimum Norm Problems

Theorem: Let M be a closed subspace of a Hilbert space H. Let x € H.
Consider the linear variety V = « + M. Then there exists a unique vector

v* € V with the smallest norm, i.e.,
07|l < lvfl, Yo e V.

Moreover, v* is characterized by v* L M.
Proof: Any vector in V' has the form

v=x—m, méeE M.

33



Hence ||Z|| < ||v||, Yv € V, is equivalent to ||@ — mol| < || —m]|, Ym € M.
Now the theorem follows from the projection theorem. a
Linear Varieties:

o N = span{yy,--+,yn} is a subspace. Hence, U = z + N is a linear
variety.

o M ={m:{(m,y)=0,k=1,---,n} = Nt is a subspace. Given {c;},
let vg € V ={v: (v yp) = e,k =1,---,n}. Then V = vy + M and

thus is a linear variety.

Theorem: Let {yx}7_, be a collection of linearly independent vectors.
Then the minimum norm vector v* € V has the form:

n
%
v = Z arYr.
k=1

Moreover
a1 5]

G(yh e 7yn)

an Cn
Proof: N is finite dimensional and thus is closed. Hence
N=N"*=M"

Since v* € M*, the form of v* follows. The rest of the proof is obvious from
the definition of V. O

Ex: Find v with minimum L;[0, 1] norm subject to

B(t) +wlt) = u(t) (1)
i=ult) @)
with
6(0) =w(0)=0, 0(1)=1, w(l)=0.

Let V' be the subset of L0, 1] such that every element in V satisfies these
constraints.

Let w,a € V. Let (w(t;u),0(t;u)) be the solution of DE’s. Then by
linearity of DE’s,

(wltsu + ), 00t u + i) = (w(t u), 0(t:u)) + (w(t; 1), 0(8; ).
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Then 6(1;u + @) = 2 and thus V is not a subspace. Indeed V is a linear
variety. Let ug € V. Let M be the collection of u such that the above DE’s
are satisfied with the boundary conditions

6(0) = w(0) =0(1) = w(l) =0.
Then V = ug + M.
Let u € V. Then
¢
w(t) = w(())e_t —I—/ e_(t_s)u(s)ds
0

and thus )

1
/ e_(l_s)u(s)dSZO or / e*u(s)ds = 0.
0

0
On the other hand, substituting (2) into (1),

1

w(1) — w(0) + (1) — 0(0) :/ u(s)ds = 1.

0

Hence V is the set of all elements such that

1 1
/ e‘u(s)ds = 0, / u(s)ds = 1.
0 0
Let y1(t) = €', y2(t) = 1. Then the problem becomes to find u such that
<u7y1> = 07 <u7y2> =1
with the minimum L, norm. By the above theorem,
u(t) = aya(t) + azya(t),
where «¢;’s are obtained from
(ary1 + agyz,y1) =0

(191 + azya,y2) = 1.

Minimum Distance to a Convex Set
Theorem: Let x € H and K be a closed convex subset of H. Then there
exists a unique vector kg € K such that

o — kol < ||z — k||, ¥k € K.
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Moreover kg is the unique minimum iff
(¥ — ko, k — ko) <0, VkeK.
Proof: Let {k;}32, be a minimizing sequence, i.e.,
lim flo — k| = & = faf [}« — .

By parallelogram law,

2

ki + k;

I = 17 = 2 = 7+ 2l = P 4| - 2

. o kit+k -
Since K is convex, % € K and thus

dim [k — k||? < 28% + 28 —48* = 0.
1,]—00

Hence, {k;}32, is a Cauchy sequence. since H is a Hilbert space, there exists

ko = limi—ook; € H. Since || - || is continuous and K is closed, ||@ — ko|| = ¢
and kg € K.

To show the uniqueness, let k; be such that ||x — k¢]] = 6. Then the
sequence {k, } = {ko, k1, ko, k1, - -} results in ||a — k,|| — 6. Hence as shown

above {k,} is Cauchy and convergent. Therefore it must hold that ko = k.
(=) Consider the following function of A € [0, 1].

g(A) = lle = [(1 = ko + AE]|I* = [I(1 = A)(z — ko) + Az — B

=(1- )\)2"1} — k0H2 +2A(1 = AN)(z — ko, 2 — k) + )\2H$ — kH2
Hence

d
2g(N) = =21 = Vlfe = kol + (2 = AN (& — ko, 2 — K} + 2\l — k||

If kg is the minimizing vector, then %g()\)‘A_O > 0 and thus
—2||x — kol|* + 2(x — ko, x — k) > 0.
U
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(¥ — ko, —(x — ko) + (x — k)) > 0.
U
(¥ — ko, k — ko) < 0.
(<) For any k € K, k # ko,

o = kI = e — ko + ko — kII* = [l — kol + 2(x — ko, ko — K} + [[ko — k]

= [l = koll* = 2{x — ko, k — ko) + [[ko — K||* > ||z — kol|*.

O
Ex: Let {y1, -, y,} be vectors in a Hilbert space. Find aq,---,a, > 0
such that || — >"7_; agys|| is minimized.
Solution: Let K be the collection of vectors given by

K= {Z ARy, Ak = 0}-

k=1

K is a closed convex set. From the theorem, we have kg = >_7_; atyy which
has the property that
<l’—k0,k—k0> S 0.

LItk =ko+yj, (¢ —ko,y;) < 0.
2. f bk =ko— aly,, (¢ — ko, —aly;) < 0. Hence af{x — ko, y;) > 0.

As a result, we have

(z — ko,y;) <0
and, if a7 > 0, then
(¥ — ko,y;) = 0.
Let b be a vector given by
b, = (x,y;).

Then
b— Gy, yn)a™ <0, a =[al,---,a’]".

> 'n

Let z = b—=G(y1,- -, yn)a*. Then a’z;(a*) = 0 because either (x—ko,y;) or a;
is zero. Find a vector a” such that a3z;(a*) = 0 and b — G(y1,- -+, yn)a” < 0.
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Chapter 7

Dual Spaces

Dual Space
Def.: An operator f from a linear space X into R is said to be a functional.

If it holds
flax 4+ by) = af(x) +bf(y), a,beR, z,y € X,

it is called a linear functional.
Fact: A linear functional on a normed space X is continuous at a point
o € X iff 1t is continuous on X.

Proof: (<) Obvious.
(=) Let @, — x as n — oo. Then

|f(zn) = f(2)] = [f(zn — 2 + 20) = f(20)].
Since x, — x4+ 19 — x0, f(x, —x+x0) — f(20) and thus |f(z,)— f(x)] — 0.
O

Def.: A linear functional on a normed space X is said to be bounded if
there exists M > 0 such that for all z € X,

()] < M][x]].

Fact: A linear functional on X is continuous iff it is bounded.

Proof: (<) If z, — 0,

|f(@n)| < Mlz,]| — 0.
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and thus continuous by the above fact.

(=) There is 6 > 0 such that |f(x)| < 1, for ||z|| < 6. Then for all z € X,

vwnzk(5xﬂ”ﬂ<ﬁﬁ“

]

Hence M = %. O
Def.: Let X be a normed linear space. The collection of all bounded
linear functional on X is called the dual space of X, denoted by X*.
Algebraic Structure of X*
For all f,g € X*, a,b € R,

(f+9)(x) = f(z) +g(z), VeeX

(af)(e) = af(x), Ve X
f=0 & flz)=0,VereX
af +bg e X~

Hence X* is a linear space.
Topological Structure of X*
For an element f € X*, we define

/()]

[fllx+ = sup === sup |[f(z)] = sup |f(x)].
rexazo |7l jei<t Jlofl=1
Then
ol e sp MELEWEL el et
rEX 20 ] rexazo |zl sexazo |7
= [[fllx= +llgllx~
Hence || f||x+ defines a norm on X*.

Theorem: X* is a Banach space.
Proof: It suffices to show the completeness. Let {f,} C X* be Cauchy.
Then for any « € X, {f.(2)} C R is Cauchy and thus is convergent since

[fu(@) = fm(@)] < lfn = fullllz]]. Define fas f(z) = limy oo fu(w). [ is

linear since

flaz +by) = lim fo(ax +by) = lim {afu(z) + bfaly)}
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= anh_{go fal) + bnh_{go faly) = af(z) +bf(y).
For x # 0, given € > 0, there exists M > 0 such that
|fn(x) - fm(l')| < 6”va n,m > M7 \V/l', Z 7£ 0.
U
[f(@) = fm(@)] < ellzfl, m>M, Ve
Hence
[f (@) = |f(z) = frm(@) + frn(@)] < |f(2) = fr(@)| + [ ()] < (4 1 Fm D]l

and thus f is a bounded linear functional. Finally from |f(z)— f..(2)] < €|z,
m> M, Ve e X, |f— full < €and thus f, — f. O
Ex 1: Let X = R™ and consider an element in X*. Define a; by

(" ex) =ar, k=1,---,n.

By linearity, we have

n
(", 2) = Z apTr.
k=1

Hence, the vector [ay,---,a,]T is the representation of z*. Indeed we can
establish a one-to-one correspondence between X* and R™.
3 x5z
T (]

veXazo |2

Then for 1 < p < o0,

1 1
o= sup | Xk arr| (X lag]?) e (g |k?)”

ceXa#0 (T [xgfp)r T weXoo (S |ziP)?

. (Z wf — Jall

where 11_9 + 5 = 1. Consider x given by x; = |ak|%5ign(ak). Then

]

1 1
q P P g
]| = (Z|aklpp) = (Z|ak|q) = [lall7-
k k
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Moreover,

g
(™ )] = 3 Jan] 7 =3 Jar]* = [lall}.
k k

Hence . . )
el ”“Z”“g el =l
g
Therefore
27| x+ = [|allq
and thus

[ e = Nlally-

To this end, R™ with g-norm is the representation space of the dual of R"
with p-norm.

Special case p = 2: Euclidean norm case

X = R" is a Hilbert space

R™ with the Euclidean norm is the representation space of X*

Ex 2: R™ with 1-norm is the representation space of the dual of R™ with
oo-norm and vice versa.

Ex 3: For 1 <p < oo, [, is the representation space of the dual of [,.

Ex 4: For 1 <p < oo, L, is the representation space of the dual of L,.

Ex 5: For 1 <p < oo, H, is the representation space of the dual of H,.

Ex 6: Dual of ¢ 1s /5.

Extension Version of Hahn-Banach Theorem

Def.: Let S be a subspace of a Banach space B. Let f be a linear
functional on S. A linear functional F' on B is said to be an extension of f
iff F(a)= f(x), x € 5S.

Def.: A functional p on a Banach space is said to be sublinear if the
following properties hold:

a) p(x +y) < p(x) +p(y)

b) plax) = ap(x), a > 0.

Notice that a norm is sublinear.

Hahn-Banach Theorem: Let X be a normed linear space. Let M be a
subspace of X. Let f be a linear functional on M such that

flz) <plx), VeeM
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where p is a sublinear functional on X. Then there exists a linear extension
F on X such that
F(z) <p(x), VeelX.

Proof: Read the textbook. O
Corollary: Let f be a linear functional on a subspace M of a normed
linear space. Then there exists a linear extension F' on X that extends f and

[ F(x)]| = sup M

veM,z0 |||

Proof: p(z) = || f/l[x]]. O
Corollary: Let # € X where X is a normed linear space. Then there
exists a bounded linear functional £ such that

Fa) = [|F[[]«]-

Proof: If @ = 0, trivial. Suppose = # 0. Define f on span{xz} by
flax) = al|z||. Then ||f]| = 1. Now extend f to X using p(x) = ||z||. Then

Fa) = f(z) = =]l = [[ENl]=]]

O
Dual of C0,1]

Riesz Representation Theorem: For any element z* € X* with X =
C10, 1], there exists a function f of bounded variation on [0, 1] such that

+*(2) = /01 (1)df (1),

Moreover [la*|| = | fllzvio.

Conversely, every element in BTV/[0,1] defines a bounded linear functional
on X.

Second Dual Space

The dual space of X* is called the second dual space of X, and it is
denoted by X**.

Let (x,2*) denote the action of «* on an element € X. Then x can be
viewed as a functional on X* and thus X C X**.

Def.: A Banach space is said to be reflexive if X** = X.

Ex1: 1,, 1 < p < oo, are reflexive.
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Ex2: L,, 1 < p < oo, are reflexive.

Ex3: H,, 1 < p < oo, are reflexive.

Ex4: Iy, lo, L1, Lo, Hy, Ho, co and CJ0, 1] are not reflexive.

Alignment and Orthogonal Complement

Def.: Let X be a normed linear space. An element z* € X~ is said to be
aligned with an element x € X if

(2,27) = |l27[|[«]-

Ex: « € [, (Then «* € [,). Let 2} = Szgn(:zjk)|:1;k|§ Then

. o 4B o ) o ) ;1_7 o ) % .
(z,27) = D Jag[ T = Y |anl” = | D [ Dol ) = Nl
k=1 k=1 k=1 k=1

Def.: Let x € X where X is a normed linear space. #* € X* is said to be
orthogonal to z if (x,2*) = 0.

Def.: Let M be a subspace of a normed linear space X. Then the or-
thogonal complement of M is a subspace of X*, denoted by M*, defined
as

M+ = {2": (m,2™) =0, Ym € M}.

Def.: Let M* be a subspace of X*. The orthogonal complement of M* in
X is a subset of X, denoted by + M* (to distinguish from (M*)1), defined as

tM* = {x: (x,m") =0, Ym* € M*}.
Theorem: Let M be a closed subspace of a normed linear space. Then
M =*(M*h).

Proof: It is clear that M C H(M*). Let + € M and N = span{z + M}.

Define the linear functional on N:

flax+m)=ua
where m € M. Then
flax+m a
(3 S A 0 VN
ax+meEN,ax+m#0 Ha:z; ‘I’ mH ax+meEN,ax+m#0 Ha:z; ‘I’ mH
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1 1 1
ax+meN,Sa1;]E|)-m¢o,a¢o ||sign(a)x + |7:_|H 75/134 [z +m!|  infoven ||z + ||
Since M is closed, || f|| < oo and thus f is bounded. Otherwise there exists
{m/;} in M such that ||+ — m's|| — 0, and thus « € M. Then by Hahn-
Banach theorem, there exists an extension #* € X* of f. Since f, and thus
z*, vanishes on M, 2* € M*. However (z,2*) = 1 and thus « ¢ +(M*). To
this end, *(M*) C M and the theorem follows. a
Minimum Norm Problems in Normed Space
Problem 1: Let M be a subspace of X. Let + € X. Find mg € M such
that

o = moll < e = mll, Vi € M.

Problem 2: Let M* be a subspace of X*. Let 2* € X*. Find m§ € M~
such that
le” = mgll < |27 =m7[|,  ¥m™ < M.

Although the problem formulation is similar to both cases, the second
gives stronger results because X™ is Banach as long as X is a normed space.

Theorem: Let x be an element in a real normed linear space X and let d
be the distance between # € X and a subspace M of X. Then

d= inf ||t —m]| = max (x,m™).
meM ([ *|<1m*eM L

Let mg be the solution of the maximization. If the infimum is achieved
at mg € M, then mg is aligned with z — my.

Proof: Given € > 0, let m. € M be such that || —m.|| < d+ €. Then for
m* e M*, ||m*|| <1,

(2,m%) = (& = me,m™) < |lz —m[[|[m”] < d + e

Since € is arbitrary,
(x,m™) < d.

Let N = span{x + M}. Define the linear functional on N:
flax 4+ m) =ad

where m € M. Then similar to the previous theorem,

d

infen lo +m'||

IF1l =
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By Hahn-Banach theorem, there exists an extension mj € X* of f. Since f,
and thus mg, vanishes on M, mj € M*. Moreover (x,m}) = d. Hence the
first part of the theorem follows.

Notice that |[mj]| = 1. Hence

(x = mo,mg) = (x,mg) = d = ||lz = mol| = [[mg]|[|& = mol|.

O
Corollary: Let x be an element in a real normed linear space X and let
M be a subspace of X. Then mg € M is such that ||z — mo|| < ||a — m|| for
all m € M iff there exists nonzero mj € M* aligned with z — m.
Proof: (=) Obvious.
(<) WLOG assume ||mg|| = 1. For all m € M,

[l = moll = (& = mo, mg) = (w,mg) = (x —m,mg) < |l —m]|.

a

Theorem: Let M be a subspace in a real normed linear space X and let
d be the distance between z* € X* and a subspace M+ of X*. Then

d= min |["—m"||= sup (m,z").
mreM - bl <1men

Let mg be the solution of the minimization. If the supremum is achieved
at mo € M, then myg is aligned with 2* — mg.
Proof: Notice that

|e*—m™|| = sup |(x,2"—m")| > sup |(x,z"—m")|=  sup |(x,z7)|

zeX,[le||<1 zeM,||z[|<1 zeM,||z[|<1

Let 2*|p be the restriction of «* on M. Using Hahn-Banach Theorem, let
y* be the extension of x*|y such that ||y*|| = ||x*|m||. Define m§ = a* — y*.
Then mj € M=+ and

vl = sup  |(z,2"|m)| = sup  [(@,27)].
eM JJz]|<1 rEM |Jz]|<1

= [ly7ll = ll=

Notice that |[mg|| = 1. Hence

(mo, @™ —mg) = (mo,27) = d = |27 = mg|| = [lmol[[|+™ — mg[.

45



a

[; Optimal Control
Given the transfer function H(z) of a linear time-invariant discrete time

system,
H(z) = Z bzt
=0

where {h;} is the sequence of unit pulse response of the system. In time-
domain, the system is described by the convolution:

y=hx*u.

This system is called BIBO stable if any u € [, results in y € [. It is well
known in linear system theory that the linear system is BIBO stable iff {h;}
is an [; sequence. Indeed

[H][ = sup |[[h*ullo =[]l

llulles <1

Youla-Jabr-Bongiorno Parametrization of All stabilizing Controllers (Sta-
ble Plant Case): A controller C' internally stabilizes the stable plant iff

. Q
1= PQ

where () is a stable transfer function.
Then the sensitivity and complementary sensitivity become

1 1-PQ
S =TT T Toporpg LY
PC PQ

M) =1Tpc~1-pospg "¢
respectively. Notice that these closed loop maps are affine w.r.t. @. In
general, even for unstable plants, the closed loop map is given as H — G()
where H and (G are stable transfer functions.
Before we proceed, notice that if « € [; and y € [, are aligned, then

ri=0, ifyi <lylle

iy > 0.
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Given the closed loop map from disturbance to the output, H — G(), the
controller that internally stabilizes the plant and minimizes the effects of the
bounded disturbances can be obtained from the following /; optimal control
problem:

inf || H - GQ|.

stable ¢

For simplicity assume ((z) have n distinct zeros inside the open unit disk,
{a;}"_;. Define K = GQ. Then K can be any stable transfer function such
that K(a;) = 0. Hence the [; optimal control problem is equivalent to

inf ||H — K|
stable K

subject to
K(a;)=0, j=1,---,n.

Notice that the constraints are equivalent to
Zkia; =0, g=1,---,n.
=0

|}
(kyar;) =0, (kyat;)=0, j=1,---,n

where
ar; = Re(1,a;, a?, <)y at; = Im(0, ay, a?, ).

To this end, the [; optimal control problem reduces to a minimum norm
problem in /y:

inf ||h — k|1

keM

where M is the subspace defined by
M=Akel:(kar;))=0, (kyai;) =0, j=1,---,n}.

Existence of Optimal Solution: Notice that /4 is the dual of ¢y. Hence by
the minimum norm problem theorem, the optimal solution always exists.
Finding Minimum Norm: By the minimum norm problem theorem,

inf ||h— k|1 = max  (h,r)

keM reML ||r]|<1
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However, r has the representation:

n n
r = E a;ar; + E At iGT;.
=1 7=1

Hence
(h,r) = Za ReH (a —I-Zanﬂ]mH(a])]
i=1 1
and ]
[rlle <1 & —1<ZaRe Zanﬂjm )<1, j=0,1,2,-
i=1
To this end,
mf I|h — k|, = max Za ReH (a —I-Zanﬂ]mH(a])]
i=1 j=1
subject to

—1§ZaiRe —I—Zanﬂ]m( )<1 7=0,1,2,-

=1 =1

Remark: Since ||a;|| < 1, only a finite set of constraints are necessary.
This is due to the fact that the constraints are redundant for all j greater
than some N. The jth constraint is exactly the jth coefficient of r. Hence
the optimal solution r* has the following properties:

Il =1

[r3] <1, ¥j> N.

Construction of Optimal Solution: Suppose K™ is the optimal solution
and the optimum is g. Then b = h — k* € [; is aligned with r* € [, i.e.,

(0, 77) = [1llal[r"[oc = p2-

0
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0
> birT = (107
=0

)
bi =0 i [ri| # |7l

161 =D o] = p.
=0

From the above remark, 6 will have only finitely many nonzero b;. However,
there are many such b satisfying the alignment condition and not all of them

leads to k*=h — b€ M. For k* = h — b € M, b; has to satisfy
Zbia;: (b7A]): (th]) :H(aj)v J=1L-n
=0

where
Aj=(1,a;,a%,a3,-).

3y

To this end, k* € M iff b = h — k* satisfies
bi =0 i [|ry|| 7 [Ir"]le

Yool =g
1=0

Zbia;:H(aj), j=1,,n.
=0

From the solution b of these equalities and inequalities, £*, )* and C* can
be found.

Ex: Suppose there are two interpolation points:
ay =jx, ay=—jxr, —l<x<l.
Step 1 (find minimum norm): Let

H, = ReH(jx), H,=ImH(jz).
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We need to solve

max(a; H, + a2 H;)

a1,a2

subject to
—1 S aq S 1
—1 <ayz <1

where the rest of constraints are redundant. The optimal solution is clearly

a1 = Sign(HT)

1
= —swgn(H;
a xszgn( )

and the minimum norm is

| H;|

X

po=H]+

Moreover, the extremal functional is given by:

r* = (a1, vas, —z%aq, - - ).

Step 2 (Construction of Optimal Solution): Notice that

H;
b:(HT,—,O,O,---).
X
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Chapter 8

Linear Operator

An operator (transformation or mapping) 7' from a subset D of a linear space
X into a linear space Y is a rule that associates every element in D to an
element of Y.

Terminologies:

1. D is called the domain of T.
2. R(T)={y:y =Tz, v € D} is called the range of T.

Def.: T is one-to-one (injective) if Yy € Y, 3 at most one € X such
that Tx = y.

Def.: T is onto (surjective) if R(T) =Y.

Def.: T' is bijective if it is injective and surjective.

If Y =R or C, T is called a functional.

An operator from a linear space X into a linear space Y is said to be
linear if

T(ax+ pz)=aoTx+ pTe, Vr,ieX.
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