### Specific Protein Binding Sensor using SWNT (case 1)

# **Electrical Sensing of Biomolecules** based Nanomaterials and Carbon Nanotubes

**Department of Chemistry** Pohang University of Science and Technology Hee Cheul Choi





5

5

10

10

## Protein Sensor using SWNT (case 2)





### Single Virus Sensor using SiNW



## What applications carbon nanotubes will contribute?



### Forms of Carbon



### Structure of carbon nanotubes

- Nanotubes consist of graphene sheets of carbon
- Rolled into a cylinder
- Some with multiple concentric cylinders





Single-walled nanotube (SWNT)





Multi-walled nanotube (MWNT)

# Representatives of carbon nanotubes



SWNTs are all C molecular wires and excellent quasi 1D systems for basic work (synthesis, materials science and physics) and potential applications





Choi, H. C. et. al J. Phys. Chem. B 2002, 106, 12361.

Diameters: <u>1-2 nm</u>
 (1-5 nm with conventional supported catalyst)

### Diameter Control: Catalytic Nanoparticles Derived in Apoferritin Templates (d~1-3 nm)

### A Simple Approach to Monolayer **Applications** Catalytic Nanoparticles: Clean Tube Films Fe(III) NH<sub>2</sub>OH Iron oxide nanoparticle • AFM tip for high resolution images and fabrication OH ОН Calcination • Electrical devices SiO<sub>2</sub> SiO<sub>2</sub> • Electro-mechanical devices Gas and biosensors 500 nm μm 250 ni Choi, H. C. et al., Nano. Lett. 2003, 3, 157.

# For better resolution



Immunoglobin G (IgG)

- consists of 4 polypeptide chains (Y-shpe)
- Two antigen binding fragments (Fab)
- One Fc site

J. Am. Chem. Soc. 120, 603-604 (1998)

Nanotube at the apex of Si tip - Direct growth for SWNT

- Glue attached for MWNT
- Nature **398**,761-762, 1999 PNAS **97**, 3809-3813, 2000



## Tube deflection and Conductance change



# Deflection and corresponding conductance changes: "reversible"



 $Chemical \ Profiling \ of \ Single \ Nanotubes: \ Intra-Molecular \ p^*n^* \ junction \\ Nanotube \ Esaki \ Diode:$ 



Carbon nanotube based Field Effect Transistors (SWNT-FETs)



Polymer functionalization for Air Stable n-type SWNT FET (JACS, 2001):





# H<sub>2</sub> sensing with SWNT/Pd single device



# Enhanced sensitivity of NO<sub>2</sub> detection for polymer (PEI) coated n-type devices



#### Nanotube sensor array with 100% yield



- Grow multiple tubes for each device in a large array
- Semiconducting tubes dominant (70%)
- Excellent electrostatic gating and chemical gating sensitivity
- Large sensor arrays obtained (100% yield, low noise)

# Multiplex-functionalized sensor array capable of detecting multiple molecules in a gas mixture



P. Qi, et al, Nano Lett. 3, 347, **2003** 



#### Non-specific interaction of SWNT with proteins



### Hydrophobic/vdW anchoring of Tween20/PEG





Non-covalent irreversible adsorption
Water solubility, highly stable
Protein resistant
Tween 20 & Pluronic block copolymer P103 are the best

#### Selective electronic biosensor



Chen, Choi et al J. Am. Chem. Soc. 2004, 126, 1563

### Origin of the conductance change

### Where does the conductance change come from?

- Nanotube aspects:
  - Charge injection from biomolecules
  - Electric double layer field modulation caused by biomolecules
- Metal-nanotube contact aspect:
  - Adsorbed chemical species may modulate work function level of contact metals, which consequently change the Schottky barrier height resulting in the conductance change.



# Nanotube vs. metal-nanotube contact

### Nanotube vs. metal-nanotube contact



# Summary of biomolecule sensing mechanism



Effective functionalization of metal surface with appropriate chemical species will lead high sensitive and selective nanotube-biosensor.

## Application 1 : DNA-templated CNT-FET





Keren. K, et al. Science. 2003, 302, 1380

# DNA and Protein Sensor using GC/CNTs (case 3)





A (DNA) : 10 pg/mL target oligonucleotide B (protein) : 80 pg/mL IgG (a) single ALP tag (b) CNT-multiple ALP tags (c) CNT-ALP tags modified GC electrode

50 μL α-naphthyl PBS sol'n(50 mM) w/ enzymatic rxn

Magnetic beads-DNA-CNT + 10 pg/mL target sample

Wang. J, et al. J. Am. Chem. Soc. 2004, 126, 3010.