Printing Methods for Organic Electrode

김 철 환

㈜ 디피아이 솔루션스

Smart Labels – Price Sensitivity of Markets

How do we learn to produce them cheaply ... or add value to high-volume products?

Application Dependent Targets

Critical Device Parameters	AM-OLED	E-Book	Unknown	
Field-effect mobility μ_{FE}	>1	>.01		cm ² /V-sec
On-off current ratio	>10 ⁶	>10 ⁵		
Operational lifetime	>104	>104		hr
Magnitude of mean threshold voltage	<5	<20		V
Minimum line spacing	5	5		μm
Minimum line width	10	10		μm
Alignment tolerance	10	10		μm
Gate dielectric capacitance	>35	>0.3		nF/cm ²
Subthreshold voltage excursion	<5	<10		V
Gate dielectric breakdown voltage	>30	>100		V
Conductor 1 sheet resistance Rs	<40	<100		Ω/square
Conductor 2 sheet resistance R _S	<10	<100		Ω/square

Ink jet printing

- Inkjet printer can be used to generate surface pattern with appropriate "ink" (resolution ~50 μm):
 - resist: by using a resist precursor as ink the mask can be printed directly
 - electr. active materials: "printing" of electronic devices, like thin film transistors (TFT)
 - DNA: generate DNA arrays for sequencing applications
 - polymers: printing of polymer precursors for rapid 3D prototyping (layer-by-layer)

Aerosol Jetting

- M3D Deposition Rate: Aqueous Material, Ultrasonic Atomization
 → 0.25 mm³/s
- Typical inkjet: 40 μm diameter droplets @ 4 kHz
 - **→** 0.1 mm³/s

Aerosol Jet Characteristics

Patterning Technology: Thermal Multi-Layer

Microcontact printing

- · Transfer of SAM precursor with elastomeric stamp onto substrate:
 - ⇒ master generation by photolithography and similar techniques:
 - stamp is obtained by casting of elastomer (PDMS, e.g.) over master

⇒ pattern generation by stamping of SAM precursor onto substrate:

\Rightarrow quality of μ CP SAMs is comparable to films obtained by adsorption from solution

stamp solution

stamp solution

stamp solution

Embossing

 Rigid master (stamp, Ni or SiO₂, e.g.) is pressed into thermally softened polymer substrate (PMMA, polycarbonate → CD, e.g.) to transfer relief structure to polymer:

 application: microchip for isotachophoresis (electrophoretic separation technique for ionic compounds)

⇒ Microcutting: embossing of metal-coated polymer films creates metallic micro-objects

 application: IR-polarizer, polarization-dependent color filter (on the right)

Solvent Assist Micromolding(SAMIM)

 Quasi-3D microstructure formation in polymeric substrates by solvent etching in microcapillaries:

Shadow-Mask Patterned Microelectronics at 3M

<u>Steven Theiss</u>, Paul Baude, Dave Ender, Chris Gerlach, Michael Haase, Tommie Kelley, T.C. Lee, Dawn Muyres, Dennis Vogel

Why polymeric shadow masking?

- · Cheap/ reusable
- Compatible with roll-to-roll
- Flexible
- Non-damaging

- ·Large area
- Enables top contact devices
- All additive

Web coating - alignment

- Registration with 20-30 µm accuracy is the challenge
- 3M pending I.P. for laser ablated shadow masks for integrated circuits
- · Align shadow mask cross-web with substrate, active alignment
- Step-and-repeat manufacturing process

R2R Deposition and etching

- Moving from photovoltaics to flexible electronics
 - R2R reactive ion etching
 - Deposition of silicon nitride and intrinsic micro-crystalline silicon
- Device results

Imprint Lithography

- Basics of imprint lithography
- Comparison with R2R patterning alternatives
- R2R implementation of imprint lithography
- Self-Aligned Imprint Lithography (SAIL)

Benefits and Drawbacks of Roll-to-Roll Processing

Benefits

- High throughput --- expected lower costs
- Steady state operation in deposition and etching systems
 - · amenable to in line monitoring
- Substrate loads 1000 ft² at a time

Drawbacks

- Distortion of web increases difficulty in lithography
- No "prior generation" production equipment available for R&D work
- Each added step leads to a new design and build development program
 - · New material deposition or etches require new machines
 - Variation of order in processing steps require modifications of internal structure on existing machines

Metal printing

Applications of electrode patterning

- Achievable minimum line widths are a function of droplet size and wetting properties
- Demonstrated resolution and line width of 100 microns
- •Emerging print head technologies with smaller droplet sizes will enable lines down to 50 microns
- •Combined with other patented technologies, track and gap down to 10 microns have been demonstrated

- RFID tags
- Plastic electronics
- Batteries and fuel cells
- Printed circuitry
- RF shielding
- EL disposable displays
- Sensors

- Rapid prototyping
- Decoration high metallic lustre
- Aerials and antennas
- Solar panels
- Windscreen heaters
- Display