

Korea Institute Chemical Engineering Fall Meeting

Recycling study of the fiber stainless steel from grinding swarf by using supercritical fluids.

<u>Jun Youl Yang¹</u>, Chang Ha Lee², Youn Woo Lee³, Ki Pung Yoo⁴, Jong Sung Lim^{4,*}

¹Clean Technology Research Center, Korea Institute Science and Technology
 ²Dept. of Chemical Engineering, Yonsei University
 ³School of Chemical Engineering, Seoul National University
 ⁴Dept. of Chemical and Bio-molecular Engineering, Sogang University
 *Corresponding author: limis@sogang.ac.kr

Where was Swarf come from ?

Swarf Characteristics

 $\sqrt{}$ The mean size 150 μ m of the fiber structure

SEM micrograph of Swarf

∧ A fiber structure of Swarf is valued ten times more than same price metal materials because its manufacture is difficult and complex.

Problems of the Current Disposal Method

✓ Low recovery rate for making steel ≈ 47 ~ 48%
 ✓ Produce of much fume because the swarf contains oil over 10wt% of total weight

The Swarf Recycling Methods

Vacuum Thermal Extraction
 Solvent Extraction
 Supercritical Fluids Extraction

Advantages of the Supercritical Fluids Extraction

√ No residual oil in grinding swarf
√ Extracted oil can be reused without any refinement
√ No deforming during extraction
√ Environment-friendly and energy efficient
√ Recycle of extraction fluid easily facilitated
√ Adjustable solvent power

Korea Institute of Science and Technolog

NSEI UNIVERSITY

Experiment Apparatus

- CO₂ or C₃H₈ cylinder
 High pressure pump
 Cooling circulator
 Pre-heater
 Extraction vessel
 Metal basket
 Thermocouple
 Magnetic stirrer
 Air bath
 Pressure transducer
 Rupture
 Back-pressure regulator
 Separator
 Rotameter
- 15. Dry gas meter

Mathematical model

Single parameter model with linear desorption kinetics

Mass balance in bulk phase in the extraction cell

$$\frac{\partial C}{\partial t} + v \frac{\partial C}{\partial z} + \frac{1-\varepsilon}{\varepsilon} \rho \frac{\partial q}{\partial t} = 0$$

Linear desorption kinetics can be written as :

$$\frac{dq}{dt} = -k_d q$$

The mobile phase can be considered as an irreversible process Because of the lack of information on effective diffusivity of oil in SCCO₂ phase and the adsorption isotherms

The initial condition is :

$$q = q_0 \qquad at \quad t = 0$$

The desorption profile :

$$q(t) = q_o e^{-k_d}$$

The comparison of removal of oil in extraction vessel(case 2) with removal of oil from swarf(case 1) under 20MPa, 40 °C.

1. Carbon Dioxide

Dept. of Chemical Engineering

rinding of	il concentration	at different	k. values

NSEI UNIVERSITY

T(°C)	P(MPa)	q ₀ (g/g)	k _d (min-1)	t(min)	ρ ₀ (g/ml)
30	100	1.474	0.00409	840	0.772
	150	1.473	0.00593	720	0.847
	200	1.474	0.00633	720	0.891
	250	1.474	0.00659	600	0.923
	300	1.474	0.00728	600	0.949
40	100	1.474	0.00513	720	0.628
	150	1.473	0.00631	720	0.781
	200	1.475	0.00704	660	0.840
	250	1.475	0.00768	600	0.880
	300	1.475	0.00851	540	0.911
50	100	1.475	0.00594	660	0.386
	150	1.473	0.00678	600	0.701
	200	1.474	0.00785	540	0.785
	250	1.474	0.00896	480	0.835
	300	1.474	0.01037	480	0.871

The parameters used in this model

for supercritical CO₂ extraction

Effect of Temperature

10MPa

25MPa

Korea Institute of Science and Technology

Effect of Pressure

Effect of CO₂ flow rate

2. Propane

Dept. of Chemical Engineering

SEM Micrographs of the Swarf after extracting

Vacuum Thermal Extraction

Solvent Extraction(n-Hexane)

Supercritical CO₂ Extraction

Subcritical C₃H₈ Extraction

Supercritical C₃H₈ Extraction

Conclusions

Dept. of Chemical Engineering

The feasibility of supercritical extraction to recycle the stainless steel by removing grinding oil from grinding swarf was tested.

In this work, the extraction efficiency depends on temperature and pressure. Also, as solvent flow rate increased, the extraction efficiency is increased. The experiment results was predicted by applying a one-parameter mathematical model assuming linear desorption kinetics. The predicted value showed good agreement with experimental data.

We could know from the SEM for the oil removed swarf that the steel fiber was deformed and oxidized by vacuum thermal extraction. However, by using supercritical fluids as a solvent, we could not only remove cutting oil from raw swarf, but also preserve the fiber's own characteristics of swarf effectively.

Alternative method : Supercritical Fluids Extraction

