Calculation of Phase Equilibria of Ionic Liquids and CO₂ using GC-NLF EoS

Korea University Chemical & Biological Engineering Kim, Yong-soo

What Are Ionic Liquids?

Organic salts composed of cations and anions
Usually liquid state in near room temp.

R,

Tetraalkyl-

ammonium

Most commonly used cations:

1-alkyl-3-methylimidazolium

N-alkylpyridinium Tetraalkylphosphonium (R_{1,2,3,4} = alkyl)

Some possible anions:	water-insoluble		→ water-soluble
	[PF ₆]-	$[\mathbf{BF}_{4}]^{-}$	[CH ₃ CO ₂] ⁻
	$[(CF_3SO_2)_2N]^-$	[CF ₃ SO ₃]	[CF ₃ CO ₂], [NO ₃]
	$[BR_1R_2R_3R_4]^{-1}$		Br-, Cl-, I-
			[Al ₂ Cl ₇] [*] , [AlCl ₄] [*] (decomp.)
Most commonly	ethyl octyl		
used alkyl chains:	butyl decyl		
	hexyl		

Reprinted from Seddon et al., Pure Appl. Chem., 72, 2275-2287, 2000

Characteristics of Ionic Liquids

- Negligible vapor pressure
 No fugitive emissions
- ♦ Wide liquidus range : 300 to 400°C
- Good sovents
 - Dissolving both polar and nonpolar species
- Modification of physical and chemical properties
 - The substituents on the cations (alkyl groups)
 - The choice of anion

Applications of Ionic Liquids I

Reactions

- Hydrogenation, hydroformylation, isomerization, alkylation, Diels-Alder reaction, etc...
- Good or better reaction rates and selectivities

Electrolyte/fuel cells

 Wide electrochemical window, high conductivity, and a low dielectric constant

Lubricants

- High thermal stability and large liquidus range

Applications of Ionic Liquids II

- Recovery of organic solution of SCF CO₂
 - No contamination in SCF

Scheme 1 Pictorial illustration of a $scCO_2/IL$ biphasic system \mathbf{R} = reactant, \mathbf{P} = product, \mathbf{I} = polar intermediate (*e.g.* carbamate 4).

- Continuous catalytic processes using SCR CO₂ as mobile phase
- Liquid-Liquid extraction
- Gas separations
 - The solubility of CO_2 in [bmim][PF₆] is about 0.6-0.7 mole fraction at 100 bar.

Motive

Studies on ionic liquids

- Focused on the synthesis of ionic liquids and the application of catalytic reaction as solvents
- Very few measurements and no modeling of the phase equilibria relating ionic liquids

This work

- Modeling of phase equilibria for ionic liquids and carbon dioxide
- Application of group-contribution NLF theory

NLF-HB Theory

- Nonrandom Lattice Fluid Hydrogen Bonding Theory
 - NLF EOS by You et al. [1994 a, b]
 - Expansion to associating system using
 Veytsman statistics[1990] by Yeom et al. [1999]
 - A normalization of Veytsman statistics by Lee et al. [2001]
 - Application of amino acids using extended
 Veytsman statistics by Park et al. [2002, 2003]

GC-NLF Theory

- Calculations of parameters for group contribution
 - Connectivity relation : $zq_q^G = r_q^G(z-2) + 2(1-l_q^G)$
 - Group size parameters :

$$r_i = \sum_{j=1}^G v_{ij} r_j^G$$

G = G

- Group energy parameters :

$$\mathcal{E}_{ij} = \sum_{k=1}^{G} \sum_{l=1}^{G} \theta_{ik}^{G} \theta_{jl}^{G} \mathcal{E}_{kl}^{G} = \frac{\sum_{k=1}^{G} \sum_{l=1}^{G} v_{ik} v_{jl} q_{k}^{G} q_{l}^{G} \mathcal{E}_{kl}^{G}}{\sum_{k=1}^{G} \sum_{l=1}^{G} v_{ik} v_{jl} q_{k}^{G} q_{l}^{G} \mathcal{E}_{kl}^{G}}$$

GC-NLF Theory

- The temperature dependency of size and energy parameters proposed by Kehiaian
 - Group size parameters

$$r_{j}^{G} = w_{j}^{G} + h_{j}^{G} (T - T_{o}) + c_{j}^{G} (T \ln(T_{o}/T) + T - T_{o})$$

- Group energy parameters

$$\mathcal{E}_{ij}^{G} = a_{ij}^{G} + b_{ij}^{G} (T - T_{o}) + d_{ij}^{G} (T \ln(T_{o}/T) + T - T_{o})$$

Groups of Ionic Liquids

Cations

Anions

 $H_{3}C$ $H_{2}C - CH_{2}$ $H_{2}C - N + N - CH_{3}$

- $[BF_4]^-$, $[PF_6]^-$, $[(CF_3SO_2)_2N]^-$

Determination of Group Parameters

- Methyl and ethyl group : from Kang's data
- Ionic liquids : Imidazolium and anions
 - Liquid density
 - Assuming that its vapor pressure is less than 10⁻⁵ bar.
- Carbon dioxide
 - Using PVT data
 - Conversion of values of You et al. [1994]
- Carbon dioxide and other groups
 - VLE data

Group size parameters

Children Har

Group	w_a^G	h_{δ}^{G}	C _c G	l_i
CH3	2.6293	-3.5423e-4	3.0078e-3	0.5
CH2	1.5525	-7.0335e-5	6.0318e-4	1.0
Imim	5.3383	2.5610e-4	9.0646e-4	1.0
PF6	5.4475	-4.6293e-5	-0.0236	0.0
BF4	3.0153	4.3912e-3	-0.0596	0.0
CO2	3.8322	0.1044e-1	5.2964e-3	0.0

Group interaction parameters I

Group	a_{ij}^{G}	b_{ij}^{G}	d_{ij}^{G}
СН3-СН3	79.8206	0.0152	-0.0762
CH3-CH2	93.9827	0.0159	-0.0168
CH3-imim	142.6601	0.0264	-0.2391
CH3-PF6	69.5207	0.1965	0.5689
CH3-BF4	46.9115	0.2547	0.7097
CH3-CO2	73.5246	-0.0548	-0.0469
CH2-CH2	115.786	0.0546	0.0101
CH2-imim	178.1273	0.1418	0.3003
CH2-PF6	80.8913	0.1688	0.1415
CH2-BF4	55.5056	0.2267	-1.4049

Group interaction parameters II

Group	a_{ij}^{G}	b_{ij}^{G}	d_{ij}^{G}
CH2-CO2	87.5626	0.0226	-0.0721
Imim-Imim	190.0152	0.1664	0.8805
Imim-PF6	246.5117	0.1732	0.1498
Imim-BF4	266.4575	0.2438	0.1316
Imim-CO2	101.3528	-0.0217	-0.2436
PF6-PF6	266.8880	0.1626	-0.0239
PF6-CO2	158.8124	-0.1864	-1.3339
BF4-BF4	282.0467	0.2505	0.1148
BF4-CO2	183.1955	0.1039	-2.2597
C02-C02	84.097	-0.0977	-0.4073

of ionic liquids at various temperatures

The solubility of carbon dioxide in [bmim][BF₄] [Husson-Borg et al., 2003]

Result – High Pressure for [bmim][PF₆]

The solubility of carbon dioxide in $[\text{bmim}][\text{PF}_6]$ [Kamps et al. 2003]

Conclusions

- GC-NLF equation of state was found to be effective to predict the phase equilibria of carbon dioxide and ionic liquids.
 - For wide range of pressure and temperature
 - The effect of the length of alkyl chain in imidazolium ring on the solubility of carbon dioxide in ionic liquids