# 중국의 바이오매스 급속 열분해

# 1. 서론

#### 중국의 오일 부족

- Due to rapid growth of economy, demand for energy is also rapid growing in China.
- In 2005, 317.67 million tons of oil were consumed and 42.9% of them were imported.
- In 2020, nearly 500 million tons of oil will be consumed and more than 60% need to import.
- Oil shortage gives us opportunity to develop new technologies of alternative fuel.

## 중국의 농업부산물 생산량: 연 간 700 백만톤



### 2. 바이오매스의 액체전환

# 바이오매스를 이용한 액체 연료 생산



#### 급속 열분해 개론



#### 공정 요구사항

**Drying** 

<10%. Feed moisture and reaction water report to bio-oil

Comminution

~2mm for fluid-bed reactor

Fast pyrolysis

High heating rate (≥1000°C/s), moderate temperature (470~550°C), short residence time (≤2s)

Char seperation

Efficient char separation needed

Liquid recovery

Quickly cool and condensation

#### 파일럿 장치

- Process capacity: 120kg/h
- Fluid-bed reactor
- Auto-thermally pyrolysis
- **Continuously work**
- Scrubbing with bio-oil
- Bio-oil yields:
  - ≥ 50% for agricultural
  - ≥ 60% for wood

## 실험결과

| Feedstock                       | Rice husk | Corn stalk | Cotton Stalk | Sawdust  |
|---------------------------------|-----------|------------|--------------|----------|
| Bio-oil yields / wt%            | 51        | 57         | 56           | 60       |
| Caloric value / MJ/kg           | 16.16     | 16.41      | 16.77        | 16.91    |
| Energy efficiency / %           | 60        | 63         | 63           | 64       |
| Moisture content / wt%          | 27. 4     | 28. 2      | 27.8         | 26. 6    |
| Specific gravity/ -             | 1.1~1.2   | 1.1~1.2    | 1.1~1.2      | 1.1~1.2  |
| Viscosity at 40°C and 25% water | 50~120cP  | 50~120cP   | 50~120cP     | 50~120cP |
| pН                              | 2.8~3.5   | 2.8~3.5    | 2.8~3.5      | 2.8~3.5  |

#### 바이오오일 주성분

| Chemical compound identification | Quantification<br>(Area% of GC-MS) | Chemical compound identification    | Quantification<br>(Area% of GC-MS) |
|----------------------------------|------------------------------------|-------------------------------------|------------------------------------|
| Acetic acid                      | 17.72                              | 2,5-diethoxy-tetrahydrofuran        | 2.66                               |
| methyl acetate                   | 5.32                               | 2-hydroxy-3-methylcyclopent-2-enone | 2.14                               |
| ethyl isobutyrate                | 0.36                               | 1-(3,5-dimethoxyphenyl)ethanone     | 0.65                               |
| furan-2-carbaldehyde             | 4.83                               | 4-allyl-2,6-dimethoxyphenol         | 0.44                               |
| 2-oxopropyl acetate              | 1.04                               | 4-hydroxy-2-methoxybenzaldehyde     | 6.84                               |
| phenol                           | 2.14                               | 2,5-dimethoxybenzaldehyde           | 2.40                               |
| o-cresol                         | 1.12                               | 2-methoxy-4-methylphenol            | 1.67                               |
| p-cresol                         | 1.30                               | 2-methoxyphenyl acetate             | 1.95                               |
| 1,2-benzenediol                  | 5.55                               | 4-ethyl-2-methoxyphenol             | 0.45                               |
| m-cresol                         | 4.67                               | 4-allyl-2-methoxyphenol             | 1.91                               |
| anthracene                       | 0.80                               | 3-methylbenzaldehyde                | 2.86                               |
| pyrene                           | 0.52                               |                                     |                                    |