

biomass program

열적변환의 플랫폼 경제 분석

Economics of Thermal Conversion

biomass program

Examining economics of syngas in an integrated process & biorefinery design

Examples of specific thermochemical products for which detailed designs exist:

- Biomass syngas to hydrogen (complete)
- Biomass syngas to mixed alcohols with separation of ethanol (on-going)

Performing A Detailed Design

Intermediate Syngas Price – Targets & Barriers

biomass program

 DOE program targets based on intermediate syngas price to track progress toward reducing technical barriers

Decrease in syngas price due to increased yields, decreased capital costs, & efficiency gains

Tie in With Research

Progression of Analysis

biomass program

Progression of analysis toward integrated biochemical/thermochemical biorefinery design

 Using results of biomass to H₂ detailed design to move forward for mixed alcohol detailed design

Begin by building stand-alone mixed alcohol design

 Build off of stand-alone mixed alcohol analysis and stand-alone ethanol analysis, to create a biochemical/thermochemical integrated biorefinery design

Biomass Gasification – Syngas to Products

- FY 2003 NREL's preliminary screening study showed H₂ to be technically and economically feasible product from biomass gasification
- H₂ was picked as a model product to show effect of process integration & economics of a final product from biomass gasification
- Performed detailed process design and modeling using Battelle Columbus Laboratory (BCL) low pressure, indirectly-heated gasifier

Gas composition	mol% (dry)	
H_2	23.85	
CO_2	12.79	
CO	42.18	
CH_4	15.36	
C_2H_2	0.41	
C_2H_4	4.35	
C_2H_6	0.29	
C_6H_6	0.13	
$tar(C_{10}H_8)$	0.23	
NH_3	0.32	
H_2S	0.07	
H ₂ :CO molar ratio	0.57	
Gasifier efficiency	72.1% HHV basis	
	71.8% LHV basis	

Syngas Clean Up & Gas Conditioning

biomass program

Two designs examined based on catalytic tar destruction and heteroatom removal work at NREL:

- current design defines today's state of the technology
- goal design shows the effect of overcoming R&D technical barrier

Tar reformer conversion #'s

Compound	Current	Goal
Methane (CH ₄)	20%	80%
Ethane (C ₂ H ₆)	90%	99%
Ethylene (C ₂ H ₄)	50%	90%
Tars (C ₁₀₊)	95%	99.9%
Benzene (C ₆ H ₆)	70%	99%
Ammonia (NH ₃)	70%	90%

Higher conversions for goal case; notably methane.

Biomass Gasification - Detailed Design

biomass program

Both designs broadly consist of:

 feed handling, drying, gasification, gas clean up and conditioning, shift conversion, and purification integrated with a steam and power generation cycle

Main design differences:

	Current	Goal
Tar reformer	Bubbling fluidized bed with 1% per day catalyst replacement	Reactor vessel & catalyst regeneration vessel operating isothermally
Steam methane reformer (SMR)	SMR downstream of sulfur removal	None (SMR eliminated)

Integration is Important

PFD-P700-A000

bromass program

only the heat network.

FT & mixed alcohols will have large amount of heat available in synthesis step due to exothermic reactions (44.0)(133.8)(204.3)(108.2)Steam Cycle BFW Steam Superheat Deaeration Preheat Śteam Preheat Generation H - 407(21.0)H-405 H - 306(54.5)ZnO (47.2) H-406 Preheat (20.1)H-201 H-602 H-202 H - 304(79.4)(47.9)LO-CAT (2.9)H-101 (0.8)Preheat (1.4)(94.2)H-403 H-402 (14.0)(155.0)areas with (2.9)(127.3)(1.4)(169.0)(21.0)(74.6)(142.2)significant Cooling Cooling of Cooling Cooling of Fired Heater heat Cooling of Cooling of LTS Gas of Char Steam Cycle of Steam HTS Gas Gasifier/Tar Blowdown Combustor Reformed Gas recovery Reformer Flue Gas Synthesis Gas Duty in MM BTU/hr shown in () NATIONAL RENEWABLE ENERGY LABORATORY NREL Note: This diagram does not show the integration of all the heat exchangers,

Syngas Production is Large Contribution to Product Price

biomass program

- This is true of other products, not just H₂
- An estimation of the syngas cost can be made and used as a benchmark......however, it doesn't make sense to look at just stand-alone syngas production because integration is important and a key to economical process designs

From FY 2003 preliminary screening study

Clean, reformed syngas generation = 60-64% of total capital in thermochmeical conversion

Syngas Price – Integration Results & Lower Price

- Intermediate Price of clean, reformed syngas in an integrated process.
- Stand-alone Price of syngas with synthesis steps downstream of gas clean up & conditioning removed, natural gas used as fuel, and heat balance is reconfigured.

	(\$/MMBtu, LHV)	
	Current	Goal
Intermediate syngas price	7.25	5.25
Stand-alone syngas price	8.67	7.10
	(20% higher)	(35% higher)

- More economical to build entire syngas generation to fuels production plant than to purchase syngas due to process integration advantages
- Completed analysis; NREL technical report available at www.nrel.gov/docs/fy05psti/37408.pdf

Intermediate Syngas Cost Contribution – Current & Goal Design

Mixed Alcohols Analysis

- Dec 2004 refocused thermochemical conversion to examine synergies & integration into a sugars biorefinery
- Mixed alcohols detailed design is a follow on to the biomass to H₂ study and validates initial December spreadsheet material balance & cost calculations

Stand Alone Mixed Alcohols

Stand Alone Mixed Alcohols

- Maximum hydrocarbon conversion in conjunction with optimal/most economical gas clean up and conditioning steps is challenging
- Selected modified FT catalyst (MoS₂-variation) based on its ability to produce linear alcohols & higher sulfur tolerance
- Working on modifying biomass to H₂ model for mixed alcohols production using BCL gasifier
- Milestone report due 7/18/05

Stand Alone Mixed Alcohols - Simulation

Integrated Sugars/Thermochemical Biorefinery

biomass program

 Next step, in FY 2006 will combine mixed alcohols and ethanol stand alone systems to create an optimized biochemical/thermochemical biorefinery

biomass program

Additional analysts:

Andy Aden

Tim Eggeman

Matt Ringer

Bob Wallace

John Jechura

Kelly Ibsen