

Hydrogen from Terrestrial Biomass

Ralph P. Overend
National Renewable Energy Lab

ASES – Renewable Hydrogen Forum April 10 - 11, 2003 World Resources Institute Washington, D.C.

Outline and Issues (1)

Resource

Biomass is the World's 4th fuel

- Potential is a function of land and energy competitions:
 - Land: Food, Urbanization, Fibre, Water, Conservation
 - Energy: Utility and cost as a delivered energy form
- US has land and significant capability
- Both US and Rest of the World (ROW) require energy crops to reach full potential
- Evaluation does not cover all conversions

Outline and Issues (2)

Technology

Biomass is a complementary resource to other renewable hydrogen resources

- Hydrogen from biomass is based on demonstrated gasification and pyrolysis technologies allied with proven hydrocarbon reforming technology
 - Conversion efficiency is high
 - Cost of H₂ at the plant is predicted with a medium level of confidence
 - GHG offset is significant and large
- Biorefinery approaches offer economics at moderate scale
 - Medium value coproducts
- RD&D investment can address efficiency and cost improvements in the near term

* NISEL_

A vision of the Biomass Future

Biomass and Bioenergy 1999 IEA

Biomass Flows in the U.S. Economy

US Biomass Primary Energy

EIA - USA Supply Curve

Potential switchgrass production density within the U.S. by agricultural supply cells.

production density is based on the distribution of counties That convert from orginal Agricultural crop to Switchgrass At a price level of 44 \$ Mg⁻¹.

Energy Crops follow Agricultural Model

- Yield gains in Corn
- Energy crops at an early stage
 - Plant selection
 - Herbaceous crops
 - Tree crops
 - Breeding with genomics assistance
 - Management (cultivation, nutrients, pests etc) needs large field trials

1940

Year

1960

1980

2000

1920

1900

Status of 2050 Global Estimates

- 17 studies analyzed
 - Highest 675 EJ/y (EPA v-high yields assumed)
 - Lowest 45 EJ/y (less than today land competition)
- Biomass resources (central estimates)
 - Energy crops range from 45 250 EJ/y
 - Ag residues < 20 EJ/y
 - Animal excreta < 50 EJ/y
 - Wood residues (primary + traditional reuse)
 - Urban residues
- IIASA projection on next slide

IIASA Estimate (resource based)

Uncertainties in Global Estimate

- Food land competition
 - Population forecast and per capita income estimates
 - Calories not a problem
 - High animal vs. low animal protein future is significant issue
 - Only Sub-Sahara Africa is food fuel issue likely, SE Asia a possibility
- Fiber Wood demand for population
- Effects of Climate Change and Emissions
 - Brown cloud, ground level ozone growth inhibition
 - Water availability and variability
 - Weather extremes, and plant pathogens

The Gasification Biorefinery

Biomass to H₂ Technologies

Most mature biomass conversion technologies for H₂:

- Indirectly-heated gasification
- Oxygen-blown gasification
- Pyrolysis
- Biological gasification (anaerobic digestion, landfill gas)

General Process:

* NREL

Reforming Hydrocarbons to Hydrogen

Steam methane reforming:

- Half from water, half from feedstock
- $-CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$

Biomass gasification / reforming:

- Biomass contains only 6% hydrogen, by weight
- Many people erroneously argue this point as a reason to not make hydrogen from biomass
- $CH_{1.4}O_{0.6} + 1.4H_2O \longrightarrow CO_2 + 2.1H_2$
- Carbon in biomass is chemical template for removing oxygen from water (makes CO₂)
- 33% of the hydrogen produced comes from water

Common Process Steps

Reforming

$$C_xH_y + H_2O \longrightarrow CO + H_2 + CO_2 \xrightarrow{C_xH_y} C_{H_4}$$

 $C_xH_yO_Z + H_2O \longrightarrow CO + H_2 + CO_2 \xrightarrow{C_xH_yO_z} C_{H_4}$

Shift conversion

$$CO + H_2O \longrightarrow CO_2 + H_2$$
 $CO C_xH_y C_y CH_4 C_xH_yO_z$

Purification (PSA)

$$CO_2 + H_2$$
 CO_2 CO_2 CO_3 CO_4 CO_4 CO_4 CO_4

Technology #1

Indirectly-heated gasification / steam reforming

Technology #2

O₂-blown gasification / steam reforming

Technology #3

Pyrolysis / steam reforming, with coproducts

Status of Technology

- Biomass gasification demonstrated at 100-400 tons biomass/day
- Biomass pyrolysis commercial (Liquid Smoke, Ensyn)
- H₂ process demonstrated at 10 kg/hr for:
 - biomass pyrolysis vapors
 - biomass-derived liquids (carbohydrate fraction)
 - waste streams ("trap grease")
 - gasifier product gas
- Developed fluidizable, attrition-resistant catalyst matching activity of commercial catalysts.
- Reforming process scaled-up from lab to engineering

Catalyst Development

- Conventional reforming reactor
 - Fixed catalyst bed at 850°C
- Conventional reforming catalysts
 - 10-33% NiO on Al₂O₃ support

Reforming biomass oils is most successful in fluidized bed - coking

New problem: catalyst attrition

Ceramic support reduces cost of attrition by three orders of magnitude

Economics Examples

Major assumptions:

- nth plant
- 15% after-tax IRR MACRS depreciation
- 20 year plant life
 90% capacity factor
 - Equity financed

Storage & Transport Costs

Amos, W.A. Costs of Storing and Transporting Hydrogen. NREL/TP-570-25106.

Life Cycle GWP and Energy Balance for Steam Methane Reforming

Net energy ratio = (123 MJ + 15 MJ) / 183 MJ = 0.75

Avoided Operations = steam production from a natural gas boiler and natural gas production & distribution required to obtain the natural gas

Life Cycle GWP and Energy Balance for Biomass Gasification / Reforming using Energy Crop Biomass

Net energy ratio = (123 MJ + 80 MJ) / 6 MJ = 33.8

Hydrogen Potentials

Estimate 29 Tg H₂/y from 7 EJ biomass available in 2020

- 40% of the current U.S. light duty vehicle demand
- Assumes 50% energy conversion ratio (biomass to hydrogen)
- Assumes 2x efficiency of use with fuel cell vehicle
- EIA Biomass scenario 17 Mha (42 million acres)

Petroleum demand impact

- 1.2 billion bbl/year
- 22% of total consumption (2001)
- 36% of imported consumption (2001)

Greenhouse gas savings

84 million metric tonnes of carbon equivalent/year

Prospects 2020 +

- Improved process efficiency + 10%
- Higher yield energy crops + 25%
- Access to more marginal land with adapted crops to produce reasonable yield ?

Research Needs

Higher process efficiencies => lower cost

- Gasification & pyrolysis
- Reforming
- Single-stage shift

Feedstock development

- Residue harvest / collection / storage technologies
- Energy crop yield optimization
- Crops that can be economically grown on marginal lands

Biorefinery

- Suite of bioproducts
- Heat and mass optimization

System integration

- Combined heat, power, and fuels
- Modular system development
- Catalyst regeneration
- Gas conditioning

Utilization of wet biomass streams

- Biological gasification
- Liquid-phase catalytic gasification

Summary

Benefits

- Resource diversification
- More sustainable energy production
 - Fewer greenhouse gas emissions (-17% in transportation sector)
 - Positive net energy balance (net energy ratio = 33.8)
 - Life-cycle, not just tailpipe environmental benefits
- Dispatchability reduces storage costs
- Biorefinery coproduct opportunities
- Quantities and technologies provide near-term opportunity for renewable hydrogen
 - Accessible residues and available technologies provide immediate starting point for biomass to hydrogen
 - Potential: 40% of current light duty fuel market from biomass hydrogen
 - Economics provide good incentive for renewable hydrogen