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HYDROGEN FACILITIES AND GOOD TO EXCELLENT
RENEWABLE ENERGY RESOURCES

Type of Facility

A Captve Hydrogen Producer

o Gaseous Hydrogen Producer
m  By-Product Hydrogen Producer
m  By-Preduct Purifier

% Liquid Hydrogen Producer

& Satellte Termi nal

®  Undetermined
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Outline and Issues (1)

Resource
Biomass is the World’s 4t fuel

« Potential is a function of land and energy
competitions:
— Land: Food, Urbanization, Fibre, Water, Conservation

— Energy: Utility and cost as a delivered energy form
« US has land and significant capability

« Both US and Rest of the World (ROW) require
energy crops to reach full potential

 Evaluation does not cover all conversions



Outline and Issues (2)

Technology

Biomass is a complementary resource to other renewable
hydrogen resources

» Hydrogen from biomass is based on demonstrated gasification
and pyrolysis technologies allied with proven hydrocarbon
reforming technology

— Conversion efficiency is high

— Cost of H, at the plant is predicted with a medium level of
confidence

— GHG offset is significant and large
 Biorefinery approaches offer economics at moderate scale
— Medium value coproducts

 RD&D investment can address efficiency and cost
improvements in the near term
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A vision of the Biomass Future
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Biomass Flows in the U.S. Economy
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EIA - USA Supply Curve

Biomass Price $ GJ*

USA Biomass Supply Curve 2020
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the U.S. by agricultural supply cells.
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Energy Crops follow Agricultural Model

* Yield gains in Corn h
* Energy crops at an

early stage :
— Plant selection e
* Herbaceous crops %
* Tree crops %
— Breeding with genomics 3
assistance @

— Management

(cultivation, nutrients,
pests etc) needs large
field trials

United States Corn Statistics 2001
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« 17 studies analyzed
— Highest — 675 EJ/y (EPA — v-high yields assumed)
— Lowest — 45 EJ/y (less than today — land competition)

« Biomass resources (central estimates)
— Energy crops range from 45 — 250 EJ/y
— Ag residues < 20 EJ/y
— Animal excreta < 50 EJ/y
— Wood residues (primary + traditional reuse)
— Urban residues

* [IASA projection on next slide
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IIASA Estimate (resource based)

Future Biomass Resources
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Uncertainties in Global Estimate

 Food - land competition
— Population forecast and per capita income estimates
— Calories not a problem

« High animal vs. low animal protein future is significant
Issue

— Only Sub-Sahara Africa is food — fuel issue likely, SE Asia a
possibility
* Fiber — Wood demand for population

« Effects of Climate Change and Emissions
— Brown cloud, ground level ozone — growth inhibition
— Water availability and variability
— Weather extremes, and plant pathogens
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The Gasification Biorefinery
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Biomass to H, Technologies

Most mature biomass conversion technologies for H,:

* Indirectly-heated gasification

« Oxygen-blown gasification

* Pyrolysis

* Biological gasification (anaerobic digestion, landfill gas)

General Process:

Biomass [>asification Catalytic Shift PSA |Hydrogen
or — | steam >

> . [—conversion| ™ |purification "
% pyrolysis reforming “
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Reforming Hydrocarbons to Hydrogen

« Steam methane reforming:

— Half from water, half from feedstock
— CH, + 2H,0—— CO, + 4H,

» Biomass gasification / reforming:
— Biomass contains only 6% hydrogen, by weight

— Many people erroneously argue this point as a reason to not
make hydrogen from biomass

— CH, ,0y ¢ + 1.4H,0 —— CO, + 2.1H,

— Carbon in biomass is chemical template for removing oxygen
from water (makes CO,)

— 33% of the hydrogen produced comes from water
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Common Process Steps
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Tubes in a steam reformer

Reforming

C,H, + H,0—— CO + H, + CO, gHH

Shift conversion

CH
CO+H,0—— CO,+H, CO =%
2 2 2 CH, CH,0;

Purification (PSA)

/ H, >99.99% purity
CO, + H, ~__ co co CH,
2

CH,
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Technology #1

Indirectly-heated gasification / steam reforming
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Technology #2

O,-blown gasification / steam reforming
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Technology #3
Pyrolysis / steam reforming, with coproducts
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Status of Technology

« Biomass gasification demonstrated at
100-400 tons biomass/day

« Biomass pyrolysis commercial (Liquid
Smoke, Ensyn)
» H, process demonstrated at 10 kg/hr for:
. . 300'dry ton/day gasifier at
— biomass pyr0|yS|S vapors Burlington Electric, VT

— biomass-derived liquids (carbohydrate
fraction)

— waste streams (“trap grease”)
— gasifier product gas
« Developed fluidizable, attrition-resistant

catalyst matching activity of commercial
catalysts.

« Reforming process scaled-up from lab to

engineering 40 dry ton/day commercial
pyrolysis operating since 1995
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7 Catalyst Development
IELllg:t/Galzsoo 4 221‘;‘;:{’ » Conventional reforming reactor

Stea — Fixed catalyst bed at 850°C

&

« Conventional reforming catalysts
— 10-33% NiO on Al,O, support

e | |
*t*:*-)s(_ Catalyst fines

Reforming biomass oils is most
successful in fluidized bed - coking

New problem: catalyst attrition

Ceramic support reduces cost of attrition by three
orders of magnitude
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Economics Examples

Major assumptions:
* 15% after-tax IRR *MACRS depreciation
« 20 year plant life  » 90% capacity factor

e nth plant * Equity financed
D 3.0
23
Q 25 N
Q
Q 20
)
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S 15 |
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9
$’ 0.5 1
c
s |
o 4,500 15,000 22,500 4,500 15,000
cars/day cars/day cars/day cars/day cars/day

Pyrolysis/reforming, with

Gasification/reforming _
coproduct (adhesives)
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Storage & Transport Costs
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Life Cycle GWP and Energy Balance for
Steam Methane Reforming

e

Total greenhouse gas emissions
11.9 kg COsequiv/kg H

8.9

(75%)

Energy
Out

3.0

(25%) 0.04
(0.4%)
Natural Gas Construction & Hydrogen
Production & Decommissioning Plant
il Distribution Y511 Operatjon

.

Net energy ratio = (123 MJ + 15 MJ) / 183 MJ = 0.75

Avoided Operations = steam production from a natural gas boiler and
natural gas production & distribution required to obtain the natural gas




Life Cycle GWP and Energy Balance for Biomass
Gasification / Reforming using Energy Crop Biomass

>

Total greenhouse gas emissions
1.4 kg CO,-equiv/kg H,

Plant
Operati.pn

-

Net energy ratio = (123 MJ + 80 MJ) / 6 MJ = 33.8
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Hydrogen Potentials

Estimate 29 Tg H,/y from 7 EJ biomass available in 2020
* 40% of the current U.S. light duty vehicle demand

« Assumes 50% energy conversion ratio (biomass to hydrogen)
« Assumes 2x efficiency of use with fuel cell vehicle

« EIA - Biomass scenario — 17 Mha (42 million acres)
Petroleum demand impact

« 1.2 billion bbl/year

« 22% of total consumption (2001)

« 36% of imported consumption (2001)

Greenhouse gas savings

« 84 million metric tonnes of carbon equivalent/year

Prospects 2020 +
— Improved process efficiency + 10%
— Higher yield energy crops + 25%

— Access to more marginal land with adapted crops to produce
reasonable yield ?



Research Needs

Higher process efficiencies
=> lower cost

— Gasification & pyrolysis

— Reforming

— Single-stage shift
Feedstock development

— Residue harvest / collection /
storage technologies

— Energy crop yield
optimization
— Crops that can be

economically grown on
marginal lands

Biorefinery
— Suite of bioproducts
— Heat and mass optimization

System integration

— Combined heat, power, and
fuels

— Modular system
development

— Catalyst regeneration
— Gas conditioning
Utilization of wet biomass
streams
— Biological gasification
— Liquid-phase catalytic
gasification



Summary

» Benefits

— Resource diversification

— More sustainable energy production
» Fewer greenhouse gas emissions (-17% in transportation sector)
» Positive net energy balance (net energy ratio = 33.8)
 Life-cycle, not just tailpipe environmental benefits

— Dispatchability reduces storage costs

— Biorefinery coproduct opportunities

« Quantities and technologies provide near-term opportunity for
renewable hydrogen

— Accessible residues and available technologies provide immediate
starting point for biomass to hydrogen

— Potential: 40% of current light duty fuel market from biomass hydrogen
— Economics provide good incentive for renewable hydrogen



