Sustainable Hydrogen Production from Biomass by Fermentation

Freda Hawkes

Wastewater Treatment Research Unit School of Applied Sciences and School of Technology University of Glamorgan

Sustainable H₂ production technologies

- Electrolysis using electricity from renewables
- Gasification/pyrolysis of biomass
- Reforming biogas methane
- Photosynthesis (algae or bacteria)
- Dark fermentation

Fermentation

- A dark anaerobic process by which bacteria and yeasts gain energy from organic matter
- Requires wet, carbohydrate-rich biomass substrates
- Produces fermentation end products -gases, acids and alcohols
- A CO₂ neutral process

Fermentation of biomass to energy sources

Ethanol

Methane by anaerobic digestion

Hydrogen?

Fermentative H₂ production

• property of many species of bacteria, particularly clostridia

carbohydrates are favoured substrate

involves hydrogenase

• H₂ yield depends on fermentation products

Fermentative H₂ yield

hexose \rightarrow acetic acid + 4 H₂ (0.5 m³ H₂ / kg carbohydrate)

hexose \longrightarrow butyric acid + 2 H₂

thermodynamically unfavourable as H₂ conc rises

Effect of lowering dissolved H₂ conc

	Non-sparging	Sparging
H ₂ yield (mol/mol gluc)	0.85	1.43
acetic mgl ⁻¹	773	785
butyric mgl ⁻¹	1742	1929

Mizuno et al. Bioresource Technol. (2000)

Sustainable H₂ production from biomass

Requirements for fermentative H₂ producing technology

- Non-sterile operation
- •Readily-available mixed microflora
- •Operating conditions optimised for H₂ yield
- Process stability
- •Fermentable biomass substrate year-round
- Net positive energy balance

Sustainable biohydrogen production: process optimisation - EPSRC funded

Inoculum selection and start-up

- Clostridia spore formers selected by heating anaerobically digested sewage sludge
- Batch start-up for spore germination (1-2 days)
- Specific reactor conditions (e.g. pH, retention time) required to prevent competitive growth

Fermentation reactions lowering H₂ yield

Hexose \longrightarrow acetone/butanol/ethanol

 $CO_2 + H_2 \rightarrow acetic acid$

Hexose $+ H_2 \rightarrow propionic acid (non-spore formers)$

Optimisation challenges for fermentative hydrogen production

- Feedstock selection
- Inoculum selection, start-up and re-start up
- Prevention of inhibition by H₂
- Prevention of shifts in metabolism and population
- Development of sustainable process technology (LCA)

University of Glamorgan H₂ research

- Sustainable biohydrogen production: process optimisation. EPSRC.
- A sustainable energy supply for Wales:towards the hydrogen economy. EU Objective 1.
- Feasibility of sustainable hydrogen production from wheat starch-based food industry coproducts. Carbon Trust.
- Biological generation of hydrogen from renewable resources using fermentation. EPSRC SUPERGEN.

Conclusions

• Batch start-up with heat treated sewage sludge seed is successful

• Continuous operation on starch co-product is possible with H₂ yield of 1.9 moles H₂/mole hexose consumed (48% of theoretical)

• Requires H₂ stripping, on-line monitoring and control