Molecular Simulation Studies of the Ionic Liquids

Wonyoung Choi Themodynamics & properties lab

Why molecular simulation?

Possible ILs compounds

Thermophysical properties related to chemical structure and constitution

Application to the commercial process

Monte Carlo Simulation

- → Major components of a MC
 - Probability distribution function

- Random number generator
- Sampling rule
- Scoring (or tallying)
- Error estimation
- Variance reduction techniques
- Parallelization and vectorization

Solvation of small molecules in imidazolium ILs Dimethylimidazolium chloride C.G.Hanke et al.(2002)

Thermodynamic properties of

1-n-butyl-3-methylimidazolium hexafluorophosphate

Jindal K.Shah et al.(2002)

Effect of potential model (united atom force field)

1-n-butyl-3-methylimidazolium hexafluorophosphate

Jindal K. Shah et al. (2003)

Solvation of small molecules in ILs

Dimethylimidazolium chloride

- Cations and anions of the liquid
 Rigid charged molecules with fixed geometry
- Intermolecular potential
 Two-body term interaction
- Methyl group & methylene group Single sites (united atom force field)
- Electrostatic part of interaction
 Fixed point charge on each sites (partial charges)

Short range interaction (repulsion & dispersion) Site-Site interaction

Interaction between ions (partial charge on atom)
site-site Buckingham potential

- Solute-solvent short range interaction Lennard-Jones site-site interaction (C.F.Hanke et al. 2001)
- Long range electrostatics
 Ewald summation surrounding medium equal vacuum ((s = 1).

Solute-Cl Propane Local structure -examined the local environment around the Ether solutes Ranked distribution function Methanol g(r) Water

Pure properties of [bmim][PF₆]

- → Inter- and intra-molecular potential function
 - Functional form of the force field

$$v_{tot} = 1/2\sum_{ij} \left[4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right) + \frac{q_{i}q_{j}}{r_{ij}} \right] + v(\phi)$$
 Jindal K. Shah (2002)

$$v(\phi) = v_0 + \frac{v_1}{2}(1 + \cos(\phi)) + \frac{v_2}{2}(1 - \cos(2\phi)) + \frac{v_3}{2}(1 + \cos(3\phi))$$

- ◆ Lennard-Jones
- ◆ Coulombic term
- ◆ Torsional potential of dihedral angles

Ab initio calculation

- To determine the minimum geometry
- Bond length, angle, ring geometry (Cartesian coordinates)

CHELPG scheme

Partial charges on each atoms

C.M.Breneman (1990)

United atom approximation

- Carbon atoms and PF₆ anion
- Carbon and hydrogen atom bond as single site located at the center of the carbon atom
- Partial charges are equal calculated carbon and hydrogen

UA approximation

Reducing computational costing

Simulation details

- → Isobaric-isothermal (NPT) ensemble
- → Each 192 cations and anion in periodic boundary

- → Type of Monte carlo move
 - Translation of COM
 - Rotation about randomly chosen axis through cation
 COM
 - Dihedral angle rotations
- → Volume change were attempted by adding two move (maintain pressure)
- → Spherical potential truncation & long range correction

Effects of potential models

→ Effect of the accuracy of the force field

- Untied atom force field vs. all atom force field
- Required correct force field Jindal K. Shah (2003)
 - Understanding properties of ILs mixtures
 - Lack of experimental data
 - Sensitive properties with atom force field
- → UA1 UA2 AA

Modeling vs. Simulation

→ Density

◆ UA1: 3-5% over predicts

◆ UA2: 3-5% under predicts

◆ AA : less than 1%

Comparison simulation with model

- → Simulation
 - According to the composition and molecular structure, one can predict the thermodynamic properties
 - Need not the experiment
 - Calculation is quite costly
 - Accuracy of potential model is required to guarantee the value

→ Model

- Simplicity and quick calculation
- To have accuracy result in explicit system

- Some experimental data is required
 - ◆ To new or complex molecule (cannot explore), it is impossible to apply without other experiments

References

- → Z.Meng. A.Dolle, and W.R.Carper, J. Molec. Struct. 585(2002)
- → R.M.Lynden-Bell, N. A. Atanmas, and R. M. Lyndem-Bell, Green Chem., 4(2002) 107-111
- → M.P.Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York, 1990
- → J. K. shah. J. F. Brennecke and E. J. Maginn, Green. Chem.,4 (2002) 112-118