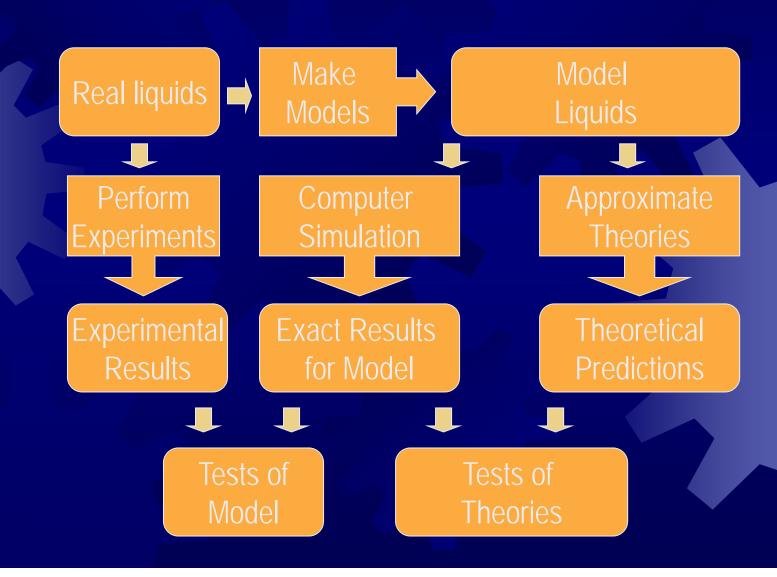


Ju Ho Lee
Thermodynamics and Properties
Lab, Korea University

What is Simulation?

- ❖ 복잡한 문제를 해석하기 위하여
 모델에 의한 실험, 또는 사회현상 등을 해결하는 데서 실제와 비슷한 상태를 수식 등으로 만들어 모의적(模擬的)
 으로 연산(演算)을 되풀이하여
 그 특성을 파악하는 일.
- Computer Simulation : Roles of the experiment designed to test theory

Computer Simulation, Experiments and Theory



Monte Carlo Simulation

Monte Carlo
 Similarity of statistical simulation to game of chance

Solution

SUIUIIUII

Equationsalgebraic or differential

Result

Random sampling

Probability
Distribution
function

Monte Carlo simulation

Physical System

Primary components of MCS

- Probability distribution functions(pdf)
 - Description of physical system
- Random number generator
- Sampling rule
 - Prescription for sampling from the specified pdf
- Scoring(or tallying) : accumulation of outcomes
- Error estimation
- Variance reduction techniquesmethods for reducing the variance
- Parallelization and vectorization
 Algorithms to implement efficiently

Terminology

- Experiment physical or mathematical process
- Outcomesresult of experiment
- Sample spacecollection of all possible outcomes
- Trialone realization of the experiment
- Eventa consequence of the outcome of the experiment

illustration

Example:

Observing the top face of the die

- Outcomes: six faces
- Sample space : consists of six outcomes
- Events

E1: top face is an even number

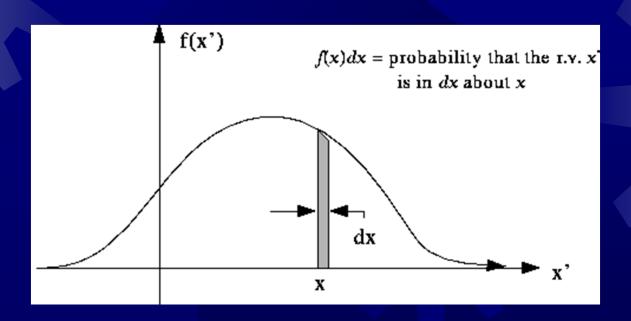
E2: top face is larger than 4

Probability Density Function

PDF

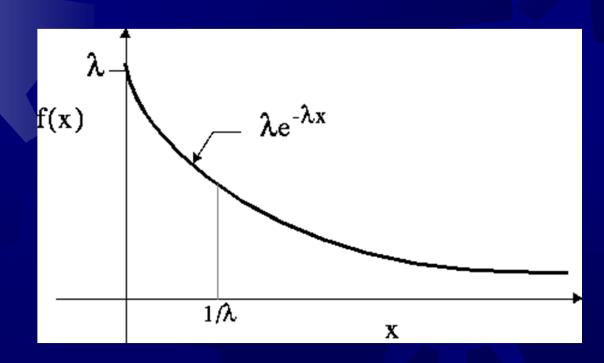
Probability that the random variable is in the interval (x,x+dx)

 $Prob(x \le x' \le x + dx) = P(x \le x' \le x + dx) = f(x)dx$



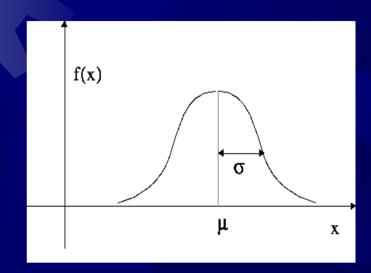
Types of PDF: Exponential

Exponential Distribution $f(x) = \lambda e^{-\lambda x}, \ x \ge 0, \ \lambda > 0$ applicable to radioactive nucleus to decay



Types of PDF: Gaussian

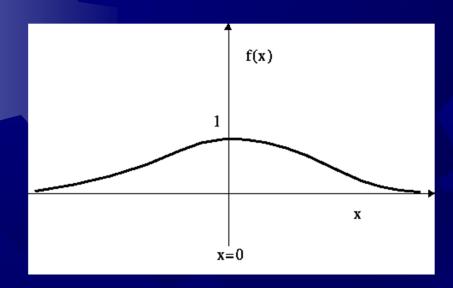
Gaussian(Normal) Distribution
 Two parameter distribution (σ, μ)
 most important pdf in probability and statistics



$$f(x) = \frac{1}{(2\pi\sigma)^{1/2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

Types of PDF: Cauchy

Cauchy Distributionnon-exist mean value



$$f(x) = \frac{a}{a^2 + x^2}, -\infty < x < \infty$$

Sampling from PDF

- Simulation of physical system
 - Random sampling from PDF +
 Supplementary computations needed to describe the system evolution

Physics and mathematics of system

Random sampling of possible states from PDF

Transformation of PDF

PDF f(x)

PDF g(y)

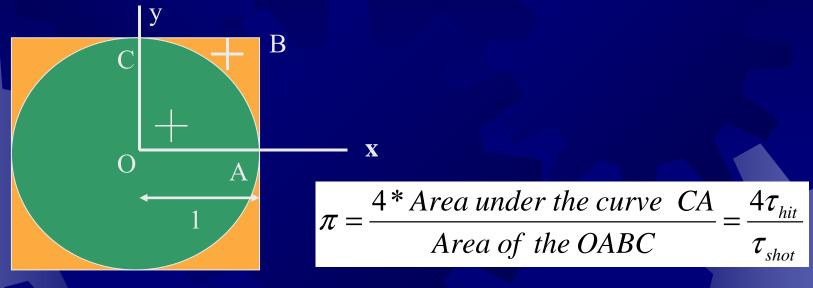
- ϕ y(x) is one-to-one relation with x
- Probability of the random variable x' occurring in dxabout x =

Probability of the random variable y' occurring in dy about y

$$f(x)dx = probabilit \ y(x \le x' \le x + dx)$$

 $g(y)dy = probabilit \ y(y \le y' \le y + dy)$

Example: MC Integration



- A number of Shots
 - Two independent random number in [0,1]
 - Set number as coordinates of a point
 - Check Distance from origin
- Record hit and miss

Importance Sampling

$$I = \int_{a}^{b} dx f(x) = (b - a) < f(x) >$$

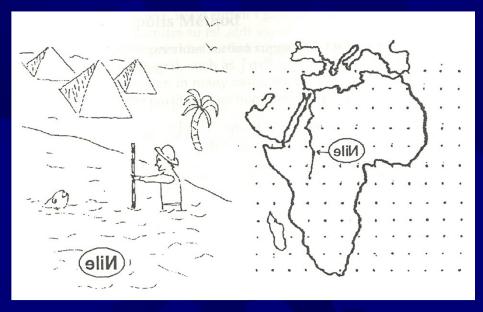
Many points in the region where Boltzman factor is large and few elsewhere

$$I = \int_{a}^{b} dx f(x) = \int_{0}^{1} dx \ w(x) \frac{f(x)}{w(x)} = \int_{0}^{1} du \frac{f(x(u))}{w(x(u))}$$

 Generate L random values of u uniformally distributed in the interval [0,1]

$$I \cong \frac{1}{L} \sum_{i=1}^{L} \frac{f(x(u_i))}{w(x(u_i))}$$

Metropolis Method



- * Random walk is constructed
- Trial move is rejected(if out of water) or accepted
- Depth of water is measured at every trial move
- Average depth of Nile River

Criteria of trial move acceptance

* Probability of accepting a trial move from \mathbf{o} to \mathbf{n} (U(o) < U(n))

$$acc(o \rightarrow n) = exp\{-\beta[U(n)-U(o)]\} < 1$$

IF generated Random number from [0,1],

Ranf \leq acc(o \rightarrow n) : accept

Ranf > acc(o \rightarrow n) : reject

A Basic MC algorithm

- For equilibrium properties of classical many-body system,
 - Select a particle at random and Calculate its energy U(r^N)
 - Give the particle a random displacement : $r' = r + \triangle$ and calculate its new energy $U(r'^N)$
 - Accept the move from r^N to r'^N with probability

 $acc(o \rightarrow n) = min(1, exp\{-\beta[U(n)-U(o)]\})$