Solubilities of Gases in the Ionic Liquids

by Won-Young Choi Thermodynamics & Properties lab. Korea University

Introduction

What is the Ionic Liquids?

- Organic salts composed of cations and anions around room temperature
- First Ionic Liquid reacted with water to form highly corrosive compounds
 - N-ethylpyridinium bromide-aluminium chloride melt (Hurley et al., 1951)
- Two main groups of ionic liquid
 - Water and air stable

Structure of Ionic Liquids

Cations

- Based on Imidazolium, Pyridinium (organic compounds)

Anions

- Inorganic compounds

$$[BF_4]^ [CF_3CO_2]^ [PF_6]^ [NO_3]^ [EtSO_4]^-$$

Schematic of the structure of [bmim][PF₆]

Preparation of Ionic Liquids

- Imidazolium based Ionic Liquids
 - Reaction of N-alkylimidazole, RIm,
 with alkyl salts (R'X) in appropriate organic solvents
 - (1) X^- is the anion of interest $RIm + R'X \longrightarrow RR'Im^+X^-$
 - (2) Fist step, alkylimidazolium halides are synthesized $RIm + R'X' \longrightarrow RR'Im^+X'^-$ X'=Cl, Br, Il
 - (3) Anion exchange corresponding acids of their salts $RR'Im^+X'^- + MX \longrightarrow RR'Im^+X^- + MX'$

§ The choice of cation M is important §

Properties

Physical Properties

- Melting point (-96°C ~)
 - Melting point is lowered as increasing length of alkyl chain in cations
 - The increasing disruption of crystal packing overrides increased van der Waals interactions between the larger components.

Density

- $1.1 \sim 1.6 \text{ g/cm}^3$ at ambient temperature (291~303K)
- The compounds of bulky, and therefore, weakly coordinating anions such as $CF_3(CF_2)_3SO_3^-$ and $(CF_3SO_2)_3C^-$ possess relatively high densities regardless of counter ions.

Properties

- Viscosity
 - Several tens to hundred times that of water at room temperature
 - Longer alkyl chains of cation makes the liquid more viscous.
 - Structure and basicity of anion affects the viscosity.
 - The decrease of the size of anion decreases the van der Waals interaction but increases the electrostatic interaction through hydrogen bonding.

Application

- Non-volatile, negligible vapor pressure
 - Green chemical solvents
 - Increasing limitations on volatile organic emissions
 - ILs are possible to replace the solvents
 - Distillation with poorly volatile or thermally labile products
 - Extraction using supercritical CO₂
 - Don't have a cross-contamination
 - Supercritical CO₂ extraction achieved greater than 98% solute recovery for several of the organics

(Blanchard et al, I&EC, 2001; Nature, 1999)

- ◆ Measuring the recovery rates of aromatic and aliphatic solutes from [bmim][PF₆]
- ◆ This work has shown that CO₂ can completely extract a wide array of organic solutes from an ionic liquid.

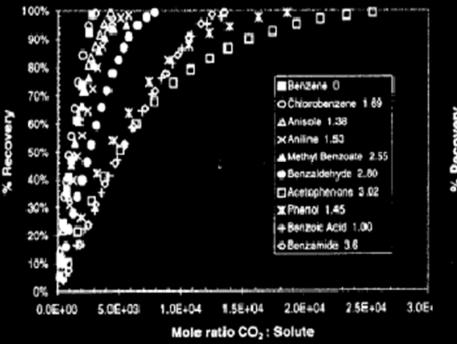


Figure 1. Extraction of aromatic solutes from [bmim][PF₆] with SCCO₂ at 40 °C and 138 bar

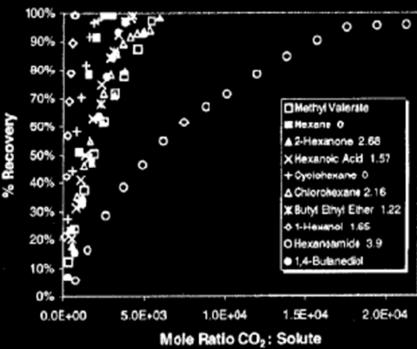


Figure 2. Extraction of aliphatic solutes from [bmim][PF₆] with SCCO₂ at 40 °C and 138 bar

Application

- Good solvent
 - High solubility and selectivity with organic, inorganic, organometallic compounds
 - Reaction solvent
 - Used to the liquid-liquid extraction process
- Catalysis
 - Fiedel-Crafts alkylations, Diels-Alder reaction, hydrogenation, hydroformylation etc.

Fig.3. Ionic Liquids permit high yields and selectivity for the Diels-Alder reaction

Effects of Ions

- Effect of cations and anions on the ILs properties.
 - Solubilities and Interaction of super critical CO₂ with anions

Table 1. Ionic liquid- CO_2 solubility(X_{CO2}) and liquid molar volumes(mL/mol) at 40, 50 and 60°C and elevated pressures (Blanchard et al., 2001)

	$T = 40^{\circ}C$			$T = 50^{\circ}C$				T=60°C		
Ionic Liquid	P(bar)	X_{CO2}	mL/ mol	P(bar)	X_{CO2}	mL/ mol	P	(bar)	X_{CO2}	mL/ mol
[bmin][PF ₆]	95.67	0.729	71.2	92.46	0.675	83.9	9:	3.01	0.667	84.5
[C ₈ min][PF ₆]	92.67	0.755	80.2	92.67	0.705	103.0	9:	2.88	0.726	94.8
[bmin][NO ₃]	92.00	0.513	99.2	92.62	0.530	95.0	9	3.17	0.522	95.9
[C ₈ min][BF ₄]	92.90	0.708	96.9	92.28	0.671	106.1	9:	3.73	0.651	111.5
[N-bupy][BF ₄]	91.59	0.579	94.0	92.35	0.581	92.2	9.	5.80	0.549	98.1
[emim][EtSO ₄]	92.68	0.423	121.0	94.27	0.403	124.6	9.	4.61	0.457	111.1

Effects of Ions

liquid-Liquid Equilibria (Anthony et al., 2001)

- The mutual solubilites of water and $[C_8min][PF_6]$ are lower than those for the equivalent IL with a short alkyl chain, $[bmin][PF_6]$
- Changing the anion from [PF₆] to [BF₄] increases the mutual solubilities.

Table 2. LLE Results for water with Ionic liquids at ambient conditions

	IL in aqu	eous phase	Water in IL phase			
Ionic Liquid	wt. %	Mol fraction	wt. %	Mol fraction		
[C ₈ min][PF ₆]	0.7 ± 0.1	3.5×10 ⁻⁴	1.3 ± 0.5	0.20		
[bmin][PF ₆]	2.0 ± 0.3	1.29×10^{-3}	2.3 ± 0.2	0.26		
[C ₈ min][BF ₄]	1.8 ± 0.5	1.17×10^{-3}	10.8 ± 0.5	0.63		

Effects of Ions

- CO₂ Capture by a Task-Specific Ionic Liquid (Eleanor et al. 2001)
 - Interaction between gases and liquid based on separation process
 - Large-scale CO₂ capture is aqueous amines to form ammonium carbamate => loss of capture agent
 - Change the functional group of ionic liquid

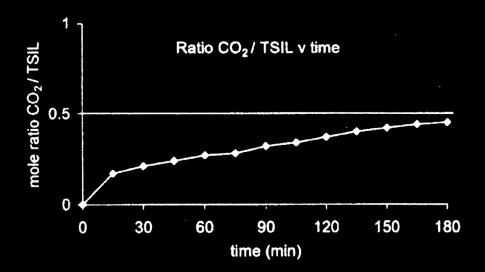


Fig. 4. CO₂/TSIL molar ratio as a function of time

Separation of CO2 from gas mixture

- Strong interaction with Ionic Liquid & CO₂
 - Phase behavior of ILs and pure gases (Jennifer et al. 2002)
 - Ionic liquid : [bmim][PF₆]
 - Carbon dioxide, ethylene, ethane, methane, argon, oxygen, carbon monoxide, hydrogen, and nitrogen
 - Gases that are less soluble in the IL are less soluble in the other solvents
 - However, carbon dioxide is more soluble in the IL than the other solvents
 - The factor to influence the solubility
 - Large dipole moment has high solubility
 - Chemical interaction anion and CO₂
 - Due to large quadrapole monent

Separation of CO₂ from gas mixture

- ILs used by absorber and Supported-liquid Membrane
 - IL can be high selective solvents
 - Used in conventional absorbers
 - Supported-liquid Membrane
 - Limitation conventional liquid slowly evaporate
 - minimum thickness
 - unstable and replenish the solvents

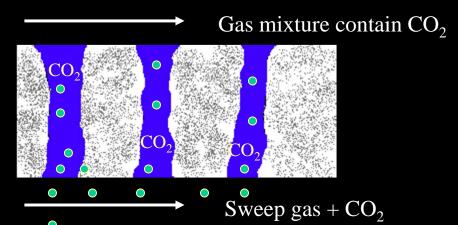


Fig.5. Supported-liquid membrane

Experimental

- Preparation of ILs
 - 1-hexyl-3-methyl-imidazolium tetrafluoroborate
 - 1-ethyl-3-methyl-imidazolium tetrafluoroborate
 - Investigation of alkyl chain length on cation
 - Certification
 - Assay: more than 99%
 - Water contents: less than 1.0%
 - To leave ILs in the vacuum oven at 55 °C for a week
 - To eliminate water and other gases

Experimental apparatus

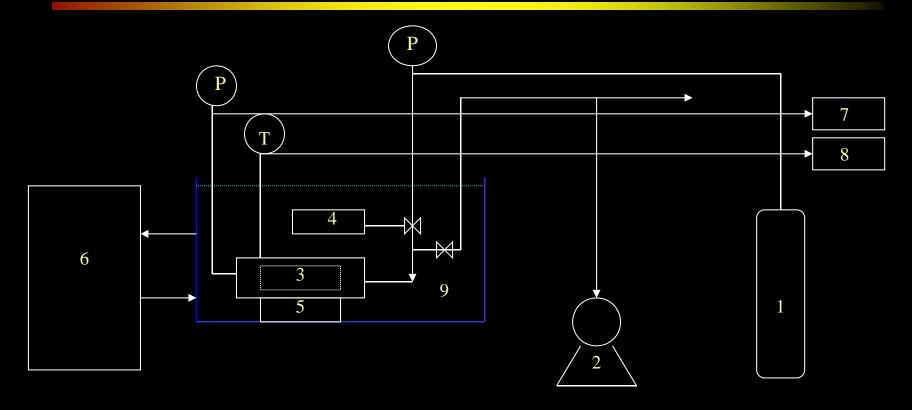


Fig. 6. The experimental apparatus for measurement of the solubility of pure CO_2 gas in the Ionic Liquids

(1) gas bomb; (2) vacuum pump; (3) view cell (4)small cell (5)magnetic stirrer (6) constant T. circulator (7) pressure indicator (8) temperature indicator (9) water bath

Experimental Method

Measurement of ILs density at difference temperature

- Using the pycnometer (5 \pm 0.005 ml)
- Temperature range : 15 − 30 °C
- To calculate mole ratio and to predict the solubility

Solubility of Pure CO₂

- Pressure range : 1 ~ 10 bar
- Measurement of the change of pressure in the view cell containing ionic liquids and pure CO₂
- Calculate the density of CO₂
 (Gas property program of University of Idaho)

