Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water

Jennifer L. Anthony, Edward J. Maginn, and Joan F. Brennecke

Wonyoung Choi

Introduction

- Using ILs & water as a solvent
 - ILs have high selectivity and diffusion coefficients as extraction solvents
 - Extraction of hydrophilic solute from ILs
 - Cross contamination
 - Recovery of ILs from water
 - Change of physical properties of ILs
 - Requirement of phase behavior of ILs-water

Introduction

- Recovery of biofuels
 - Distillation
 - highly energy consumption process
 - Existing organic solvent (tri-n-butyl phosphate, octan-1-ol etc.)
 - flammable, toxic and hazardous
 - Using ILs (ILs + water)
 - → Mutual solubility affects the selectivity of BuOH.
 - Lower solubility of ILs in water make the large selectivity

Introduction

- Extraction of metal ion by crown ether
 - Efficiency depends on both the cation and the anion.
 - Difficulty of transporting inorganic anion to organic solvent
 - ILs have high solubility with crown ether and the distribution coefficient
- Hydrophilic products using ILs as a solvent
 - Ionic liquid as a catalyst or solvent
 - Good selectivity and yield
 - Friedel-craft, Diels-Alder, alkylation reaction etc.

General properties of mixture ILs and water

- Miscible or immiscible
 - [bmim][BF₄] is miscible with water at room T
 but show UCST at low temperature(-8 and 5°C)
 - "hydrophobic" ILs → immiscibility
 - The mutual solubility can be quite large
- Effect alkyl chain length and anion
 - Halide, ethanoate, nitrate and trifluoroacetate salts
 - · totally miscible with water
 - $[PF_6]$, $[(CF_3SO_2)_2N]$ salts
 - Immiscible
 - Large chain length → Decrease solubility

• 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF₆]

• 1-octyl-3-methylimidazolium hexafluorophosphate [C₈mim][PF₆]

1-octyl-3-methylimidazolium tetrafluoroborate [C₈mim][BF₄]

Solubility of Water Vapor in Ionic Liquids

- Factor to influence the solubility of water ▶
- Anion ([C8mim][PF6], [C8mim][BF4])
 - Van der Waals volume $[PF_6]:68 \, \text{Å}^3 \, [BF_4]:48 \, \text{Å}^3$
 - High charge density for smaller anion
 - ► large solubility of water
- Temperature
 - Lower temperature Higher solubility
- Alkyl chain
 - Increasing the length of alkyl chain length decrease the solubility of water
- Chloride impurities

- ◆ Factor to influence solubility ▶
- Water Water interaction

Figure 4. Solubility of Water Vapor in [bmim][PF₆] as a Function of Time at 25 °C and 25 cubes.

ILs -vapor

 Henry's constant & Infinite-Dilution Activity Coefficients

$$\phi_{1} \cdot y_{1} \cdot P = \gamma_{1} \cdot x_{1} \cdot f_{1}^{o}$$

$$P = \gamma_{1} \cdot x_{1} \cdot P_{1}^{sat}$$

$$H_{1}(T, P) \equiv \lim_{x_{1} \to 0} \frac{f_{1}^{L}}{x_{1}}$$

$$H_{1}(T) = \lim_{x_{1} \to 0} \gamma_{1} \cdot P_{1}^{sat}$$

$$or$$

$$\gamma_{1}^{\infty} = \frac{H_{1}(T)}{P_{1}^{sat}}$$

Organic solvents - water vapor

TABLE 1: Henry's Law Constants, H_1 , and Infinite Dilution Activity Coefficients, γ^{-} , for Water in [C₈mim][BF₄], [bmim][PF and [C₈mim][PF₆] (the error in γ^{-} Is Consistent with that Given for H_1)

		[C ₈ mim][BF ₄]		[bmim][PF ₆]		[C ₈ mim][PF ₆]	
T (°C)	Past (bar)	· H ₁ (bar)	γ~	H ₁ (bar)	γ~	H ₁ (bar)	γ-
10	0.012	0.033 ± 0.014	2.65	0.09 ± 0.02	6.94	0.11 ± 0.03	8.62
25	0.031	0.055 ± 0.006	1.76	0.17 ± 0.02	5.36	0.20 ± 0.03	6.51
35	0.055	0.118 ± 0.014	2.13	0.25 ± 0.04	4.45	0.30 ± 0.02	5.87
50	0.122			0.45 ± 0.05	3.73		

TABLE 2: Literature Values for Henry's Law Constants, H_1 , and Infinite Dilution Activity Coefficients, γ^{μ} , for Water in Various Organic Solvents

		Methanol ²³		Ethanol ²³		2-Propanol ²⁵		Acetone ²³	
T(°C)	Por (bar)	H ₁ (bar)	у-	H _i (bar)	y-	H ₁ (bar)	γ-	H ₁ (bar)	γ_
10	0.012								
15	0.017					0.10	5.88		
25	0.031	Q.13	4.19	0.10	3.23				
35	0.055	0.09	1.64					0.34	6.18
45	0.096	0.17	1.77			0.34	3.54	0.54	5.63
50	0.122	0.40	3.28						
55	0.157	0.27	1.72			0.53	3.38	0.83	5.29

		Benzen	Benzene ³²		Carbon Tetrachloride ²²		Cyclohexane ²²	
T (°C)	P ^{eer} (bar)	H ₁ (bar)	7	H _I (bar)	γ-	H ₁ (bar)	γ~	
10 15	0.012 0.017	CE V	500	25	2083	78	6500	
25 35	0.031	10	323 236	37 46	1194 836	97 105	3129 1909	
45 50	0.096 0.122	1.25		-		,		
55	0.157							

ILs-Liquid

TABLE 5: Liquid-Liquid Equilibrium Results for Water with [C₈mim][BF₄], [bmim][PF₆], or [C₈mim][PF₆] at Ambient Conditions

	IL in aqu	ieous phase	water in IL phase		
ionic liquid	wt. %	mol fraction	wt. %	mol fraction	
[C ₈ mim][PF ₆] [bmim][PF ₆] [C ₈ mim][BF ₄]	0.7 ± 0.1 2.0 ± 0.3 1.8 ± 0.5	3.50×10^{-4} 1.29×10^{-3} 1.17×10^{-3}	1.3 ± 0.5 2.3 ± 0.2 10.8 ± 0.5	0.20 0.26 0.63	

TABLE 7: Liquid-Liquid Equilibrium Results for Water and [bmim][PF6] at Various Temperatures

	IL in aqu	ueous phase	water in IL phase		
T(°C)	wt. %	mol fraction	wt. %	mol fraction	
25	2.0 ± 0.3	1.29×10^{-3}	2.3 ± 0.2	0.26	
35	2.2 ± 0.2	1.40×10^{-3}	2.7 ± 0.3	0.30	
. 50	2.7 ± 1.3	1.74×10^{-3}	4.0 ± 0.3	0.40	

ILs-Liquid

- ▼ Factor to influence solubility ▶
- Shorter alkyl chain, smaller anion
 - ► large solubility
- Temperature
 - ► At high temperature, mutual solubility is large

LLE of Water - organic compounds

TARLE 6: Liquid-Liquid Equilibrium Results for Water and Various Organics at Ambient Conditions

 2.3×10^{-4}

n-Dodecanol34

	org. in aqu	eous phase	water in org. phase		
organic	wt. %	mol fraction	wt. %	mol fraction	
Benzene	0.17631	3.9 × 10 ⁻⁴	0.06622	2.20 × 10 ⁻¹	
Toluene	0.05232	1.0×10^{-4}	0.04530	2.80×10^{-3}	
Carbon Tetrachloride	0.0832	9.4×10^{-5}	0.01022	8.60 × 10	
Cyclohexane	0.00633	1.3×10^{-5}	0.00722	3.40 × 10	
n-Butano} ³⁴	7.38	1.9×10^{-2}	20.3	0.51	
Cyclohexanol34	3.77	7.1×10^{-3}	12.1	0.43	
n-Pentanol ³⁴	1.92	3.8×10^{-3}	9.0	0.34	
n-Hexanol34	0.56	1.0×10^{-3}	6.7	0.29	
n-Octanol ³⁴	0.051	7.0×10^{-4}	3.5	0.21	
n-Decanol ³⁴	3.7×10^{-3}	4.2 × 10 ⁻⁶	4.0	0.27	
	* * * * * * * *	0.0 10-7	1.4	0.10	

 2.3×10^{-7}

0.13

Recovery IL from water

- Adsorption of IL from Aqueous phase
 - For removal of Ionic liquids in Aqueous phase
 - Using Activated carbon

TABLE 8:	Percent of [bi	$mim][PF_6]$	Remaining i	n Water
	ated Carbon (_	

	•	,		
mass of AC/ initial mass of contaminant	[bmim][PF ₆] 2 day eq. time UV—vis	2 day eq. time ICP—OES	2 week eq. time	Toluene ²⁷
0.060				25.4
0.061				28.9
0.076				33.1
0.078				20.9
0.182				18.2
0.294	99			
1.31	82	80		
2.17			88	
3.37	56	46		
4.29			64	•
5.31	21	15		•
5.75	6			
7.21	2			
9.99			0.15	

Conclusion

- ILs is available for extracting solvents
- Mutual solubility with water is affected by species of ILs and their substances
- Relatively high solubilities of ionic liquids in water induce another environmental problem
- Removal of ILs will be especially important