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Decoupling

 Handling MIMO processes

— MIMO process can be converted into SISO process.
* Neglect some features to get SISO model
« Cannot be done always
— Decouple the control gain matrix K and estimator gain L.
« Depending on the importance, neglect some gains.
« Simpler
» Performance degradation
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Time-Varying Optimal Control

e Cost function
— Adiscrete plant' x(k +1) = ®x(k)+Tu(k)

minJ =— Z[x (F)Qx(k)+u’ (k)Q,u(k)]

u(k)
— Q, and Q, are nonnegative symmetric weighting matrix
— Plant model works as constraints.

. I.agrange multupluer ME)
Gon J = Z =X (k)le(k)+ u’ (£)Q,u(k) + A" (k +1)(—x(k +1) + ®x(k) + Tu(k))]

k=0
— minimization &/ =u’ (F)Q, +A (k+1D)I'=0 (control equations)
ou(k)
oJ

on(k +1) =—x(k+1)+®x(k)+T'u(k)=0 (state equations)

V__ x (£)Q,—A' (k)+ A" (k+1)® =0 (adjoint equations)

ox(k)
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— Control law: (k) =-Q,' T Ak +1)
— Lagrange multiplier update:
Mk)=D Lk +1)+Qx(k) = Mk +1) =D "L(k) - D" Qx(k)
— Optimal control problem (Two-point boundary-value problem)
« X(0) and u(0) are known, but A(0) is unknown.
« Since u(N) has no effect on x(V), A(N+1)=0.

X(k) =®x(k-1)+Tu(k-1) Boundary Conditions
Mk+1)= (I)_Tl(k)—(I)_TQIX(k) MN)=Qx(N)
u(k) = —Q T Ak +1) x(0) = x,

« If Nis decided, u(k) will be obtained by solving above two-point
boundary-value problem. (Not easy)
« The obtained solution, u(k) is the optimal control policy.
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« Sweep method (by Bryson and Ho, 1975)
— Assume A(k) = S(k)x(k).
Q.u(k) =-I'"S(k+1)x(k +1)=-I""S(k +1)(®x(k) + T'u(k))
= u(k)=—(Q, +I'"'S(k+1)I")'T'S(k +)®x(k) = —R T S(k +1)Dx(k)
where R=Q, +I'"S(k+1)I'
— Solution of S(k)
Ak) = ® Mk +1)+Q x(k) = S(k)x(k) = ®'S(k +1)x(k +1)+ Q x(k)
= S(k)x(k) = ®"S(k +1)(®x(k) —TRT'S(k +)®x(k)) + Q, x(k)
= [S(k)-®'S(k+1)® +®'S(k+ DITR'T'S(k + )® - Q,|x(k) =0
* Discrete Riccati equation
S(k)=®"[S(k+1)=S(k+DIR'T'S(k+1)]® + Q,

« Single boundary condition: S(N)=Q);.
» The recursive equation must be solved backward.

CBE495 Process Control Application Korea University Iv-5



— Optimal time-varying feedback gain, K(k)
u(k) =-K(k)x(k)
where K(k)=[Q,+I"S(k+DIT'T'S(k+1)®

« The optimal gain, K(k), changes at each time but can be pre-
computed if NV is known.

* It is independent of x(0).

— Optimal cost function value

l X' (D)Qx(k)+u’ (F)Qu(k) — 1" (k+Dx(k +1)+ (A" (k) —Q)x(k) —u’ (F)Q,u(k)]

I\.)

_1 Z\“ A (Ox(k)—A (k+Dx(k+1)]

l\)

; 27 (0)x(0) - —)J(N +Dx(N+1) = %AT(O)X(O) = %x (0)S(0)x(0)
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LQR Steady-State Optimal Control

* Linear Quadratic Regulator (LQR)

— Infinite time problem of regulation case
— LQR applies to linear systems with quadratic cost function.
— Algebraic Riccati Equation (ARE)
S, =®"[S_-S_. TR'T'S_1®+Q,
« ARE has two solutions and the right solution should be positive
definite. (J=x7(0)S(0)x(0) is positive)
« Numerical solution should be seek except very few cases.
— Hamilton’s equations or Euler-Lagrange equations
x(k +1) = ®x(k)+Tu(k) = ®x(k)-TQ;'T" Lk +1)
Mk+1) =D "h(k)- D" Q x(k)

_ {x(k + 1)} _ {cp +IQ;' T'®d7Q, —rQ;rTcD-TMx(k)

- System dynamics
Ak +1) -®7'Q, [ A(k)

™ Hamiltonian matrix, H,
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— Hamiltonian matrix has 2» eigenvalues. (n stable + » unstable)
« Using z-transform
zX(z2) =®X(z)+I'U(z2)

U(z) =—zQ;'T7 A(2) :{Zl_m FIQEFTM);(Z)}O
AG)=QX(2)+ 20 A(z) & TP LEAG)

« Characteristic equation

I-® 101’ I-® ro.'r’
de{z Q. } = de{z Q, } =0

-Q, z'I-o 0 z'1I-@® +Q,(z-®)'IQ.,'T'
= det(zl - ®)det((z ' T-®)[I+(z ' T-®")'Q,(zZI -®) ' TQ, T ) =0
= det(zI - @) det(z ' T-®" ) det(I+(z ' 1I-®' ) 'Q,(zZI -®) 'TQ,'T")=0

— det(zl-®)=0(2) is the plant characteristics and det(z"'l-®)=a(z!).
— Called “Reciprocal Root properties

» The system dynamics using u(k)=—K_x(k) will have » stable poles.
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* Eigenvalue Decomposition of Hamiltonian matrix

— Assume that the Hamiltonian matrix, H_, is diagonalizable.
-1
H =W 'HW {E O}
0 E
— Eigenvectors of H, (transformation matrix): W {

v BlREEHR N
A A A A A, A
— Solution
xX(N)| |[E™ 0 | x(0)
L*(N)}_{ 0 E‘VMK*(O)}
 Since X" goes to zero as N—oo, A"(0) should be zero.

x(k)=X,x (k) = X,E™*x"(0) _ x (0) = E"X 'x(k)
M) =A X (k)=AE*X(0)  Ak)=AX"x(k)=S_x(k)

u(k)=-K_x(k) where K_ =(Q,+I"S_I)'T’S_®

X, Xy
A A
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 Cost Equivalent
— The cost will be dependent on the sampling time.

— If the cost equivalent is used, the dependency can be reduced.
mmJ_lZ[x (7)Q,x(k) +u” (©)Q, (k)] < minJ, == j [x'Q x+u'Q uldr

uk) 2A 0

(A+1)Ar

Je = Z.Ljf C1X+uTchu]dT:%\Zi[xT(k) uT(k)]{g: w}{x(/{)}

i (k)

where {Qu QD}_J‘A” ‘I)T(T) 0 {ch 0 :I{(I)(T) r(f):ldz_
Q, Q, o FT(T) I 0 Q, 0 | |

- Van Loan (1978)
{Q“ le}:(l);d)12 where @, ={Qd 0 J and @, :{(D F}
Qy Q, 0 Q, 0 1

« Computation of the continuous cost from discrete samples of the
states and control is useful for comparing digital controllers of a
system with different sample rates.
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Optimal Estimation

 Least square estimation
— Linear static process: y=Hx+v (v: measurement error)

— Least squares solution
| 1

J=tyiv=Lly oy (y-H0= o (y -y (-H)

2 2 9).
>Hy=HHx=x=HH)"H'y
 Difference between the estimate and the actual value

x-x=(HH)"H (Hx+v)-x=HH)'H"v

« If v has zero mean, the error has zero mean. (Unbiased estimate)

« Covariance of the estimate error
P=F{x-x)x-x)"'=E{HH)"H' vwHMHH)™"}
=(H'H)"'H' E{vww' HHH)"'
— If v are uncorrelated with one another, and all the element of v have
the same uncertainty,
E{w'}=R=0’1 = P=H'H)'o’

CBE495 Process Control Application Korea University Iv-11



— Weighted least squares

J = %VTWV = %(y—HX)TW(y—Hx) = 2—J = (y - Hx)' W(-H)
X

= H' Wy=H"WHx=x=(H WH)'H Wy
« Covariance of the estimate error
P=F{x-x)x-x)}=E{(H WH)'H Wyvw WHH WH) "}
=(H'WH) " H' WE{vww 'WH(H' WH)™
« Best linear unbiased estimate

— A'logical choice for W is to let it be inversely proportional to R.
— Need to have a priori mean square error (W=R"1)
x=(H'R'H)'H'Ry
— Covariance
P=(H'R'H)"
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— Recursive least squares
* Problem (subscript o: old data, »: newly acquired data)
yO HO VO
= X —
yﬂ Hn Vn
 Best estimate of x: X
HT[R' o W], _[HT[R' o]y,
X =
Hn 0 R;I Hn Hﬂ 0 R;1 yn’
« Best estimate based on only old data
X, =X, +0X
[H,R,'H, X, =H,Ry, P,=(H;R;'H,)"
« Correction using new data
[Hf:R;lHn]iO + [HiR;lHO + HiR;lH” |ox = HiR;ly”

n- o

sx=PH R, (y,-H,X,) P =(P'+H/R'H )
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 Kalman filter
— Plant: x(k+1)=®x(k)+Tu(k)+ T ,w(k); y(k)=Hx(k)+v(k)
— Process and measurement noises: w(k) and v(k)
« Zero mean white noise
Eiw(k); = E{v(k); =0
E{w@w' ()} =E{v@V' ()}=0 (ifi#))
E{iwlk)yw' (k)}=R_, E{v(k)v' (k)}=R,
— Optimal estimation (M=P_, P(k)=P,, H=H , R =R))
X(k) =X(k)+L(k)(y (k) — HX(k))
where L(k)=P(k)H' (k)R]
P(k)=[M"'+H'R;'H]”
 Using matrix inversion lemma

P(k)=M(k)-M(k)H' (HM(k)H" +R,)" HM(k)
where M(k) is the covariance of the state estimate before measurement.
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— Covariance update
x(k) = ®x(k 1)+ Tu(k -1)
x(k +1)=X(k +1) = ®(x(k) - x(k)) + ', w(k)
M(k+1) = E{(x(k+1) =X(k + D) (x(k +1)=X(k +1))"}
= E{®(x(k) = x(k)(x(k) = x(k))' @ +T,w(k)w' (k)T }
P(k) = E{(x(k) = x(k))(x(k)=x(k))'}, R, =E{w(k)w' (k)}
M(k+1)=®P(k)®" +T\R I}

— Kalman filter equations

« Measurement update
X(k) =X(k)+P(k)H' (k)R (y(k) - HX(k))
P(k)=M(k)-M(k)H' (HM(k)H" +R )" HM(k)

« Time update
xX(k+1) = ®x(k) + Tu(k)

M(k+1)=®P(k)®" +T'\R I}

 The initial condition for state and covariance should be known.
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« Tuning parameters

— Measurement noise covariance, R,, is based on sensor accuracy.

» High R, makes the estimate to rely less on the measurements. Thus, the
measurement errors would not be reflected on the estimate too much.

» Low R, makes the estimate to rely more on the measurements. Thus, the
measurement errors changes the estimate rapidly.

— Process noise covariance, R,,, is based on process nature.
» White noise assumption is a mathematical artifice for simplification.
» R, iIs crudely accounting for unknown disturbances or model error.

 Noise matrices and discrete eguivalents
R, = E{w()w' (b)), R, = E{v(k)V' (k)}
E{W(U)WT (T)} = prsdg(?] B T): E{V(U)VT(T)} = Rvpsdé‘(n B T)
— When AT is very small compared to the system time constant (z.),
R, =R, /AT, R, = R‘_,psd/AT
R, =2t Ew (1)), R, =2r.E{(1)}

wpsd — vpsd
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— Linear Quadratic Gaussian (LQG) problem
« Estimator gain will reach steady state eventually.
 Substantial simplification is possible if constant gain is adopted.

« Assumption: noise has a Gaussian distribution

« Comparison with LQR: Dual of LQG

M(k)=S(k)-S(k)I[Q, +'S(k)[''T"'S(k) - P(k)=M(k)-M(k)H (HM(k)H" +R,) " HM(k)
S(k)=®"M(k+1)® +Q, M(k+1)=®P(k)®" +T R T,
| ®+TrQ, T'®'Q, -IQ, T'®d ™"’ SH - ® +H'RHI® ' TR I’ -H'R'H®'
° ~®7Q, @7 ° ~® TR, I @’

 Steady-state Kalman filter gain
S.=AX;'oM_=AX]
K, =Q,+I'S,I)'I'S ®<L_=M_H (HM_H' +R,)™
where [X;; A;] are the eigenvectors of H_ associated with its stable
eigenvalues.

— Assumption of Gaussian noise is not necessary, but with this

assumption, the LQG become maximum likelihood estimate.
Korea University v-17
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Implementation Issues

* Selection of weighting matrices Q, and Q,

— The states enter the cost via the important outputs
c I < T TA T
J = %Z[x%k)le(k) +u' (HQub)] = J == [px" (HH QHx(k)+u” ()Qu(k)]

k:() k:O

where Q, and Q, are diagonal matrices.

« The pis atuning parameter deciding the relative importance
between errors and input movements.

— Bryson’s rule

* ¥, max IS the maximum deviation of the output y,, and ;.. is the
maximum value for the input u..

P 2 _ 2
Ql,ff = 1/yi,max and Q2,fi _1/uz',max
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* Pincer Procedure

— If all the poles are inside a circle of radius 1/« (a=>1), every
transient in the closed loop will decay at least as faster as 1/ .
J, = ;Z[ (k)Q,x(k) +u” (k)Q,u(k)lr*"

k=0

e

J = ;Z[((x ) Q, (" x) + (&"u) Q, (a*u)] = ZZ[ZTQ12+VT(k)Q2V]a'2k
where z(k)=a#x(k), V(k)=atv(k). _

— The state equation
" x(k+1) = " (®x(k)+ Tu(k)) = z(k +1) = a® (" x(k)) + aT (a*u(k))

= z(k +1) = a®z(k)+al'v(k)
— State feedback control (LQR)

 Find the feedback gain for system (a®, ol’)
v =-Kz = o u(k) = -K(a*x(k)) = u(k) = —-Kx(k)

» Choice of oz x(1,/AT) ~ x(0)(1/ &)" <0.01x(0) = & >100"* =100"""
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