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Time-Varying Optimal Control

¢ Cost function
— Adiscrete plant: x(k+1)=®x(k)+Tu(k)
minJ :%2[x-'(molx(k)+u-'<ffJQ;u(k)]

k=0

— Q, and Q, are nonnegative symmetric weighting matrix
— Plant model works as constraints.

* Lagrange multiplier: (k)

omin J= Z [%x‘r (F)Qx(k)+ %u*’r (F)Quu(k) + 17 (k +D)(—x(k +1) + ®x(k) + Tu(k))]

— minimization & _ ' (5)Q, +1 (k+1)I'=0 (control equations)
cu(k) :
— o =—x(k+1)=®x(k)+Tu(k)=0 (state equations)
ek +1)
.CJ - = ST(RQ -1 (B)+, (k+1)® =0 (adjoint equations)
éx(k) '
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Decoupling

* Handling MIMO processes
— MIMO process can be converted into SISO process.
* Neglect some features to get SISO model
» Cannot be done always
— Decouple the control gain matrix K and estimator gain L.
« Depending on the importance, neglect some gains.

» Simpler
« Performance degradation
« Examples
.
[4] [K, Kp K: K.l = [w] TK, Ky 0 07 x
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— Control law: u(k)=-Q T ik +1)
— Lagrange multiplier update:
1(E) = O Rk + D+ Qx(k) = Ak +1) = @70 (k) -0 Q,x(k)
— Optimal control problem (Two-point boundary-value problem)
x(0) and u(0) are known, but 2(0) is unknown.
Since u(N) has no effect on x(N), M(N+1)=0.

x(k)=®x(k-1+Tu(k-1) Boundary Conditions
rE+1) =07 h(k) - DT Qx(k) LN)=Qx(N)
u(k) =-Q; T i(k+1) x(0)=x,

» If Nis decided, u(k) will be obtained by solving above two-point
boundary-value problem. (Not easy)
« The obtained solution, u(k) is the optimal control policy.
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* Sweep method (by Bryson and Ho, 1975)
— Assume A(k) = S(k)x(k).
Quu(k) =-T7S(k +x(k+1) =-T7S(k + )(®x(k) + Tu(k))
=u(k) =—(Q, +I"S(k+ DI T’S(k + D)®x(k) = -R™T'S(k + 1)®x(k)
where R=Q,+T'S(k+1)T
— Solution of S(k)
w(k) = ® (k1) +Q.x(k) = S(k)x(k) = ®'S(k = )x(k +1) ~Q,x(k)
= S(k)x(k) = @Sk + D(@x(k) - TRT'S(k + D®x (k) + Q,x(k)
=[S(k) - D Sk + )@+ ®’S(k+ DTRT'S(k+ D® - Q, Jx(k) =0
* Discrete Riccati equation
S(k) = ®7[S(k+1)-S(k +DTRT’S(k+ 1))@ +Q,
« Single boundary condition: S(N)=Q),.
» The recursive equation must be solved backward.

CBE495 Process Control Application Korea University V-5

LQR Steady-State Optimal Control

* Linear Quadratic Regulator (LQR)
— Infinite time problem of regulation case
— LQR applies to linear systems with quadratic cost function.
— Algebraic Riccati Equation (ARE)
S, =®’[S, -S,TRT’S, @ +Q,
» ARE has two solutions and the right solution should be positive
definite. (J=x7(0)S(0)x(0) is positive)
» Numerical solution should be seek except very few cases.
— Hamilton’s equations or Euler-Lagrange equations
x(k +1) =®x(k)+ Tu(k) =®x(k) -TQ' T a(k +1)
wk+D) =0 (k) -0 Q.x(k)
x(k+1)] [@+rQir’@7’Q, -rQr’o 7 |[x(k)
[;v(k-UJ { ~07Q, o7 ‘ 10
AN Hamiltonian matrix, H,
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| : System dynamics

— Optimal time-varying feedback gain, K(k)
u(k) = -K(k)x(k)
where K(k) =[Q, +T'S(k+ DI T'I"S(k + D®
» The optimal gain, K(k), changes at each time but can be pre-
computed if N is known.
« Itis independent of x(0).

— Optimal cost function value

1¥

J==F[x (B)Qux (k) +u’ (;)Quu(k) =" (k +1)x(k +1) = (7 (k)= Qy)x (k) —u” (F)Qau (k)]

= lz[;_’ (k) -7 (e + Dx(k +1)]

= };_’ (0)x(0) -ql;_’(‘\'— Dx(N+1)= %;_’(0);‘(0) = %xr(O)S(O)x(O)
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— Hamiltonian matrix has 2n eigenvalues. (n stable + n unstable)
« Using z-transform
2X(2) =®X(2)+TU(2)
U(2)=—2Q: T A(2)

{zl - QT { X(2) 7
= \
A(2)=Q,X(2)+z®  A(2) -

_ =0
-Q, I1-® z;\(z)_‘

« Characteristic equation
NE ST r‘Q;‘-r-'i‘,:de {ZIAD ST
-Q -0 0 71-@+Q(A-@)"TQ;T’
= det(Zl - ®)det((z"1 - O )1+ (" 1-07)'Q, (2l -®)'TQIT ) =0
= det(z1 -@)det(z7T- @ )det(1 +(z"1-®7)"Q, (A -®)'TQ;' T )=0
— det(zl-®)=0(z) is the plant characteristics and det(z"'1-®)=ay(z"").
— Called “Reciprocal Root properties

|=0

de

« The system dynamics using u(k)=—K_x(k) will have » stable poles.
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* Eigenvalue Decomposition of Hamiltonian matrix
— Assume that the Hamiltonian matrix, H,, is diagonalizable.

H =W H,W = F" 0

. - . . X, X,
— Eigenvectors of H, (transformation matrix): \\“:{ Lo

=7 q 1 =7 . T A Ag ]
F, ':W:F I:’F \=W{‘, |=r" N \{i |
Lo s A oAy Ag k]
— Solution
{x"(N)" =[}:"" 0 -{x'(O)-.
ranl Lo EY V0]
« Since X" goes to zero as N—a, A*(0) should be zero.
x(k)=X,x (k)= X,E"x"(0) - x (0) =E*X7'x(k)
MR =AX () =AEX (0 a(k) =A,Xx(k)=S,x(k)
u(k) =-K_x(k) where K, =(Q,+I'S.I)'I'S.®
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Optimal Estimation

¢ Least square estimation

— Linear static process: y=Hx+v (v: measurement error)
— Least squares solution

=iyl my y-my =Y oo om
2 2 ox

SHy=H'Hx=i=(HH 'Hy

« Difference between the estimate and the actual value
i-x=(HH)"H (Hx+v)-x=HH)'Hv

» If v has zero mean, the error has zero mean. (Unbiased estimate)
» Covariance of the estimate error
P=E{E-x)x-x)7}=E{(HT) " H W HHH)™}

=(H H)"H E{w JH(H H)*

If v are uncorrelated with one another, and all the element of v have
the same uncertainty,

E{w}=R=¢'1 = P=(H'H)'¢
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¢ Cost Equivalent
— The cost will be dependent on the sampling time.
— If the cost equivalent is used, the dependency can be reduced.

min J :lz.[xr(k)ozx(k)—u"(i()Q:u(lf)] S minJ, :%l-::; [x"QLx—urQ,:u]dr

LAY [ v Q= LS [¥ () ufck)]{Q‘ hS '{"“""

Q. Q::_I “(k)_l
where Q. Q.]_ (o[’ ofQ. o) )],
Q. Q::_‘-': ' (r) 110 Q.| o0 I _L
« Van Loan (197_8) ) )
{Q: Qs oL@, \vhered)q:{Qf' 0 ,andd%:|:¢ r
Q:; Q::_ - - 0 Q::_' - 0 [_I

« Computation of the continuous cost from discrete samples of the

states and control is useful for comparing digital controllers of a
system with different sample rates.
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— Weighted least squares
J=iviwy= Ly -HO Wiy -HO = % = (y—Hx) W(-H)
= H Wy =H WHx =t = (H WH)'H Wy
« Covariance of the estimate error
P=E{E-x)&-x)} = E{(H'WH)"H ' WwwWH(H'WH) "}
=(H'WH)"H'WE{W )WHH WH)™
« Best linear unbiased estimate

— Alogical choice for W is to let it be inversely proportional to R.
— Need to have a priori mean square error (W=R"')

1 =(H'R"H)"H'Ry
— Covariance

P=(H'R'H)"
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— Recursive least squares
» Problem (subscript o: old data, n: newly acquired data)

.“a-_ H“X ‘-:-
v Tl

« Best e,_stimate of X: x

RN
H, /|0 R}|H,] H, || 0 R}y,
. B‘est gstima}te based on only old data
X, =X, ~Jx
[HR]'H,Ix, =H;R'y, P, =(H;RH,)”
« Correction using new data
[HIRH,]%, +[H/R'H, + HR;'H,]6x =H/R'y,
8% =[HR;'H, +H;R;’H,]"H /R (y,-H,x,)
sx=PHR](y,-H}X,) P, =(P'+H'RH,)"
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— Covariance update
(k)= ®x(k-1)+Tu(k-1)
x(k +1)-X(k+1) = (x(k) - x (k) + T,w(k)
Mk +1) = E{(x(k + 1) - X(k + D)x(k + D -X(k +1))"}
= E{®(x(k) - (k) (x(k) - x(k)) @ + T, w(k)w’ (k)7 }
P(k) = E{(x(k)-x(k)(x(k)) - x(k)7}. R, = Efw(bw’ (b))
M(k+1)=@P(k)®" +I R I
— Kalman filter equations
« Measurement upda_te
(k) =X(b)+P(H)H (OR] (¥ (k) -HX(k))
P(k) =M(k)-M(KH)H  (HM())H +R )" HM(k)
» Time update
X(k +1)= ®x(k)+Tu(k)
M(k+1) =®P(k)®” +T R I
+ The initial condition for state and covariance should be known.
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¢ Kalman filter
— Plant: x(k+1)=®x(k)+Tu(k)+Twk), yk)=Hx(k)+v(k)
— Process and measurement noises: w(k) and v(k)
» Zero mean white noise
E{w(k)}=E{v(k)}=0
Ewiw (N =ENOV()Y=0 (ifi= )
Ewkw (h)}=R_. E{MkV (k)}=R,
— Optimal estimation (M=P,, P(k)=P,, H=H,, R =R)
X(k) =X(k)+ L(k)(y (k) -HX(k))
where L(k)=P(k)H' (k)R]
P(k)=[M" +H'R]'H]"
« Using matrix inversion lemma
P(k)=M(k)-M(k)H  (HM(5H)H” +R )7 HM(k)
where M(k) is the covariance of the state estimate before measurement.
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* Tuning parameters
— Measurement noise covariance, R,, is based on sensor accuracy.

» High R, makes the estimate to rely less on the measurements. Thus, the
measurement errors would not be reflected on the estimate too much.

» Low R, makes the estimate to rely more on the measurements. Thus, the
measurement errors changes the estimate rapidly.
— Process noise covariance, R, is based on process nature.
» White noise assumption is a mathematical artifice for simplification.
» R, is crudely accounting for unknown disturbances or model error.

« Noise matrices and discrete equivalents
R, =E{w(wW (k)}. R, = E{vKV ()}
E{w(n)wr(r)} = Rmdﬁ( -1, E{Y(r])“v(r)} = R\Am.é( n-r)

— When 4T is very small compared to the system time constant (z),

R, =R, /AT. R =R /AT
R,.= 20 E(w’ (1)}, R, =20E ()}
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— Linear Quadratic Gaussian (LQG) problem
» Estimator gain will reach steady state eventually.
 Substantial simplification is possible if constant gain is adopted.
» Assumption: noise has a Gaussian distribution
» Comparison with LQR: Dual of LQG
M(k) =S80k -S(Jc)_r[Q: S S 105) s a5 PO =M - .\l(k)H"(l-I.\l(_kJH" - R,_)"‘-H.\l(k)
S(k) =@ Mk~ 1)®+Q, Mk +1)= ®P ()@ +T,R, T
H, - [®+ rQ;'E-‘@'v'Q: -ro;'!-_-‘«p'v": ol - "qsf + H"RLHI'KP‘:I}R‘_I';' -H"R“;H@“"l
L -®7Q, @ L -&"TRIT, &

« Steady-state Kalman filter gain
S, =AX =M, =AX]
K, =(Q,+I's,I'T'S. @ =L =M _H (HM_H +R,)”

where [X;; A] are the eigenvectors of H_ associated with its stable
eigenvalues.

— Assumption of Gaussian noise is not necessary, but with this
assumption, the LQG become maximum likelihood estimate.
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¢ Pincer Procedure

— Ifall the poles are inside a circle of radius 1/« (a>1), every

transient in the closed loop will decay at least as faster as 1/c*.
7. =15 X (0@t + v () Quut

1o PT : T : 1S - 7 "
T, =3__Z:_[(a‘x)~ Q. (a0)+(aw) Qy(a" )] = —Z Z'Qz~+v ()Qvl™
where z(k)=ofx(k), v(k)=atv(k).
— The state equation
& x(k+1) = " (@x(k) + Tu (k) = z(k +1) = o®(&"x(k)) + T u(k))
= 2(k+1) = a®@z(k) + aTv(k)
— State feedback control (LQR)

+ Find the feedback gain for system (a®, oI)
v=-Kz= "u(k)= -K("x(k)) = u(k) = -Kx(k)

+ Choice of & x(z, /AT) ~ x(0)1/ &)" < 0.01x(0) = & > 100" © =100*" "
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Implementation Issues

» Selection of weighting matrices Q, and Q,
— The states enter the cost via the important outputs

N _ _ N _ o _
I =2 S RQX(B) = (HQuK)] = =3 ¥ [ox (KHQ Hx(k) v (K)Qu(k)]
where Q, and Q, are diagonal matrices.

» The pis atuning parameter deciding the relative importance
between errors and input movements.
— Bryson’s rule

* ¥;max IS the maximum deviation of the output y,, and u;,,, is the
maximum value for the input u,.

Q. =1/3 0 and Q=1
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