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Decoupling

* Handling MIMO processes

— MIMO process can be converted into SISO process.
» Neglect some features to get SISO model
« Cannot be done always

— Decouple the control gain matrix K and estimator gain L.
» Depending on the importance, neglect some gains.
» Simpler
» Performance degradation
« Examples
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Time-Varying Optimal Control

¢ Cost function
— Adiscrete plant: x(k +1) =®x(k) + Tu(k)

N

min/ = =3[ ())Qx(K)+u” ()Q.u(k)]

u(k) 21
— Q, and Q, are nonnegative symmetric weighting matrix
— Plant model works as constraints.

* Lagrange multiplier: (k)

uckﬁ}jk?-,.(k, J= Z [% xT (B)Q,x(k) + %ur (F)Qu(k)+ 1T (k+1)(—x(k +1) + ®x(k) + Tu(k))]

k=0

— minimization _&/

ETON ' (5)Q, + A (k+ DI =0 (control equations)
_y -x(k+1)+Px(k)+Tu(k)=0 (state equations)
1)
ey _ X (B)Q, -2 (k) + 2" (k+1)® =0 (adjoint equations)
ax(k)
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— Control law: (k) =-Q3' T i(k+1)
— Lagrange multiplier update:
ME) =@ Mk + D)+ Qx(k)= h(k+1) =@ L(k)- D Qx(k)
— Optimal control problem (Two-point boundary-value problem)
» X(0) and u(0) are known, but A(0) is unknown.
+ Since u(N) has no effect on x(»), A(N+1)=0.
x(k)=®@x(k-1)+Tu(k-1) Boundary Conditions
ME+D) =@ 0(k)-®TQx(k) A(N)=Qx(N)
u(k)=-Q;'T7 Ak +1) x(0) = x,
« If Nis decided, u(k) will be obtained by solving above two-point
boundary-value problem. (Not easy)
» The obtained solution, u(k) is the optimal control policy.
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* Sweep method (by Bryson and Ho, 1975)
— Assume A(k) = S(k)x(k).
Q,u(k) = -T7S(k + Dx(k+1) = -T7S(k + 1)(®x(k) + Tu(k))
= u(k) =—(Q, +I"'S(k + D) 'I7S(k +1)®x(k) = —R T S(k + ) Dx(k)
where R=Q, +I"S(k+ DI
— Solution of S(k)
k) = ® 1k +1)+Q,x(k) = S(k)x(k) = ®”S(k + D)x(k +1) + Q,x(k)
= S(k)x(k) = ®"S(k +1)(Dx(k) - TR T S(k + 1)®x(k)) + Q,x(k)
= [S(k)-®"S(k+1)® + @ S(k+ DIR'T'S (k + 1)@ - Q, ]x(k) =0
* Discrete Riccati equation
S(k) =®7[S(k+1)-S(k+DI'R'T'S(k + 1))@ +Q,
+ Single boundary condition: S(N)=Q,.
» The recursive equation must be solved backward.
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— Optimal time-varying feedback gain, K(k)
u(k) = -Kk)x(k)
where K(k)=[Q, +T7S(k+DIT' T7S(k +1)®
» The optimal gain, K(k), changes at each time but can be pre-
computed if N is known.

« Itis independent of x(0).

— Optimal cost function value
7 =3 L IF DR+ (Q,u(k) =3 (k- )x(k 1)+ G (1)- @ x()~w” (B)Q.u(h)]
Vo
=5§[3~ (k)x(k) =37 (k +Dx(k +1)]

= %}:"(O)X(O) —éx-" (N+Dx(N +1) = %1-"(0);—(0) = %x“'(O)S(O)x(O)
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LQR Steady-State Optimal Control

* Linear Quadratic Regulator (LQR)
— Infinite time problem of regulation case
— LQR applies to linear systems with quadratic cost function.
— Algebraic Riccati Equation (ARE)
S, =®'[S_-STR'T'S |®+Q,
» ARE has two solutions and the right solution should be positive
definite. (J=x7(0)S(0)x(0) is positive)
» Numerical solution should be seek except very few cases.
— Hamilton’s equations or Euler-Lagrange equations
x(k+1)= ®x(k)+ Tu(k) = ®x(k)-T'Q;' T L(k +1)
Mk +1)=® 7 h(k)-DTQx(k)

{x(k—: 1)}
=
Lk +1)
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D+ erlrrd)-rql 71-.Q;11—-7‘I)-7 x(k) : System dynamics
~d7Q, o k)

™ Hamiltonian matrix, H,
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— Hamiltonian matrix has 2n eigenvalues. (n stable + n unstable)
» Using z-transform

zZX(z) =PX(z)+I'U(z) d-@ To T |[XG)
U()=-Q]T'A(z) =|~ _?3 r}{ ) }
] T -Q, I-® || zA(2)

A =QXE)+z® A(2) -

« Characteristic equation

[:ICD rQ;r’ } (z1-® rQ;r’ }
det - =det - =
-Q, 1-® 0 'I-® +Q,(:I-®)'IQ;'T’

= det(zI- @)det((z ' T-®")[I+(z'T-®")'Q,(zI- @) 'TQ; T ])=0
= det(zI - ®)det(z"'T - &7 )det(I+ (z ' T-®7) "' Q,(z1 -®) ' TQ;'T7) = 0

— det(zl-®)=a(z) is the plant characteristics and det(z"'1-®)=a(z"!).
— Called “Reciprocal Root properties

» The system dynamics using u(k)=—K_x(k) will have n stable poles.
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* Eigenvalue Decomposition of Hamiltonian matrix
— Assume that the Hamiltonian matrix, H_, is diagonalizable.
e {El 0}
H =W'HW-=
‘ ‘ 0 E < X
— Eigenvectors of H, (transformation matrix): w {' rooe

MR NEAR N

1 Ao
— Solution
)] [EY o 1 X(0)]
L'(E\’J [ 0 E-‘J[A'(O)l
« Since X" goes to zero as N—ao, A(0) should be zero.
x(k) = X,x (k)= X,E*x"(0) -
k) = AX (k) = A E7X(0)

X‘(O) — E.\Xflx(k)
ME) = A, X 'x(k) =S _x(k)
u(k)=-K _x(k) whereK_=(Q,+I'S I)'I'S @
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* Cost Equivalent

— The cost will be dependent on the sampling time.
— If the cost equivalent is used, the dependency can be reduced.
minJ = %g[x:(k)QA(k) 0 (F)Quu(R)] < min J, = %L‘“‘tx-'qﬂx+ w’Q,uldr
13 aena T . - _ 1 Top Trin] Q Q;_ 3("‘)_
J, ﬁéfw [x'Q,x+u Q,zu]dr-ié[x (k) wu (!\)_{Q: QZ;JLU\')J
where rq, Qu:'[x (1) 0'| Q. 0 e 1@
Q Q. * @ 1o Q.| o 1|
* Van Loan (19[8)
{Qll QIE

- a 07 ® I
|=®5,®,, where ®, = Q. ,and ®@,, =
Q, Q] - . 0 Q] - [0 1]

» Computation of the continuous cost from discrete samples of the

states and control is useful for comparing digital controllers of a
system with different sample rates.
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Optimal Estimation

* Least square estimation
— Linear static process: y=Hx+v (v: measurement error)
— Least squares solution
1 2
E\r

=>Hy=HHx=x=(HH) 'Hy

J= Ty = % (y- Hx)r(y -Hx)=> i—J =(y- Hx)r(—H)
2 cx

« Difference between the estimate and the actual value
f-x=HH)'H (Hx+v)-x=HH)'H v
» If v has zero mean, the error has zero mean. (Unbiased estimate)
« Covariance of the estimate error
P=FE{i-0)E-x)}=E{(HH)'HwHHH)")
=(HH)'H E{ww HHH)"
— If vare uncorrelated with one another, and all the element of v have
the same uncertainty,
E{w'}=R=c'l = P=HH)'c’
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— Weighted least squares
J=2viwy= Ly B Wy B = = (v Hy W-H)
Z X

5
=>H Wy=H WHx=x=(H WH) 'H Wy
 Covariance of the estimate error
P=E{(x-x)E-x)'} = E{(H WH) ' H' Wvw WHH WH) '}
=(H'WH) ' H'WE{vw }WHH WH)"

» Best linear unbiased estimate
— Alogical choice for W is to let it be inversely proportional to R.
— Need to have a priori mean square error (W=R"")
X= (HIR—lH)—lHrR—l“,
— Covariance
P=(H'R'H)"
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— Recursive least squares
» Problem (subscript o: old data, n: newly acquired data)

v

* Best estimate of x: X

HT[R o ]H, . H ][R 0 i v, ]
H ][0 RI|H, H ][0 R ‘\[
» Best estimate based on only old data

%, =%, + 0%

[HIR'H Jt, = H'R'Y P =(H'RH,)"

o o do

» Correction using new data
[H'RH, X, +[H'R;'H, + H'R'H, ]6x=H'R] v,
ox=[HRCH,-H R H,HR(y,-HX,)
ox=PHR(y,-HzX,) P, =(P+HR'H)"
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* Kalman filter
— Plant: x(k+1)=®x(k)+Tu(k)+I,w(k); y(k)=Hx(k)+v(k)
— Process and measurement noises: w(k) and v(k)
» Zero mean white noise
E{w(k)}=E{v(k)}=0
Ew@iw ()} = EvOV ()} =0 (ifi= )
Ew(kyw (b)}=R,. E{v(k)WV (k)}=R,
— Optimal estimation (M=P , P(k)=P,, H=H,, R =R,)
X(k) = x(k)+ L(k)(y (k) —Hx(k))
where L(k)=P(k)H (k)R]
P(k)=[M" +H'R'H]"
+ Using matrix inversion lemma

P(k) =M(k)-M(HH (HM(K)H” +R,)HM(k)
where M(k) is the covariance of the state estimate before measurement.
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— Covariance update
(k) =dx(k-1) +Tu(k-1)
X(k +1) =X (k +1) = D(x(k) - x(k)) + T, w(k)
Mk +1) = E{(x(k +1) - X(k +D)(x(k +D) =X (k +1))7}
= E{®(x(k) - X(k))(x(k) - X(k))" ® + T, w(k)w’ ()T}
P(k) = E{(x(k) - x())(x(k) —x())}. R, = E{w(k)w’ (k)}
M(k +1) = ®P()® +T R I”
— Kalman filter equations
- Measurement update
x(k) = X(k)+ P(h)HT ()R (v (k) —HX(k))
P(k) = M(k)-M@EHH (HM(K)H” +R )" HM(k)
» Time update
X(k+1) = ®x(k)+Tu(k)
M(k +1) = ®P(k)®” +[ R _I7
« The initial condition for state and covariance should be known.
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» Tuning parameters
— Measurement noise covariance, R, is based on sensor accuracy.

» High R, makes the estimate to rely less on the measurements. Thus, the
measurement errors would not be reflected on the estimate too much.

» Low R, makes the estimate to rely more on the measurements. Thus, the
measurement errors changes the estimate rapidly.

— Process noise covariance, R, is based on process nature.
» White noise assumption is a mathematical artifice for simplification.
» R, is crudely accounting for unknown disturbances or model error.

» Noise matrices and discrete equivalents
R, = E(w(h)w'(k)}. R, =E{v(k)Vv'(k)}
E{w(imw' (1)} =R,,.,8(n-7), EFmV (1)} =R, 8(11-7)
— When 4T is very small compared to the system time constant (z,),
R, =R, /AT, R =R, /AT

vpsd
R,,.. =20, E(w' (). R, =2rEQ*()}

vpsd
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— Linear Quadratic Gaussian (LQG) problem
» Estimator gain will reach steady state eventually.
» Substantial simplification is possible if constant gain is adopted.
» Assumption: noise has a Gaussian distribution
» Comparison with LQR: Dual of LQG
M(k) = $(k)-S(RT(Q, +TIS(OT' TS (k) o PR =M() —M{k)H"'(HM(»k)H"' + Rt)"'H}[(k)
S(k) = @' M(k+ 1)@ +Q, Mk +1)= ®P(k)®" +T|R, T}
H :[m I"Q}:I‘:"(D’;Q‘ —rQ;"_r:cp""‘ . {of +H"R:.Hr<1:-"'5R“ T/ —H"R(_‘.de"'i
-07Q, o’ -® TR, T} @

» Steady-state Kalman filter gain
S.=AX'=M_=AX/
K, =(Q,+I'S ' I'S ®<L_=MH (HM_H +R,)"
where [X; A/] are the eigenvectors of H, associated with its stable
eigenvalues.

— Assumption of Gaussian noise is not necessary, but with this
assumption, the LQG become maximum likelihood estimate.
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Implementation Issues

» Selection of weighting matrices Q, and Q,

— The states enter the cost via the important outputs
1 N 1 N _
J= DX ()Qx(k)+u (F)Quuk)] = J = [px” ()H' QHx(k) + u’ (k)Q,u(k)]

2

< k=0 < k=0

where Q, and Q, are diagonal matrices.

» The pis atuning parameter deciding the relative importance
between errors and input movements.

— Bryson’s rule

* Yimax 1S the maximum deviation of the output y, and «; ... is the
maximum value for the input u;,.

(_)1 i = 1 J.:ujma‘ Hlld Q: i1 :1 ! “.‘:_mzt
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* Pincer Procedure

— If all the poles are inside a circle of radius 1/« (e2>1), every
transient in the closed loop will decay at least as faster as 1/a*.

=

I, :%Z[x’(k)le(k)+u’(k)Q:u(k)]a“‘

x

J, = %Z[(a*‘x)fol(a'*m(a’*u)TQ:(a*‘u)] - %é[zfqz SV (Q

where z(k)=cx(k), V(k)= v (k).
— The state equation
o x(k +1) = " (@x(k) +Tu(k)) = z(k +1) = a®(a"x(k)) + aT (ar*u(k))

= z2(k+1)=a®z(k) +al'v(k)
— State feedback control (LQR)

+ Find the feedback gain for system (a®, oI’)
v=-Kz= a“uk) = -K(a*x(k)) = u(k) = -Kx(k)

 Choice of a:  x(z, /AT) » x(0)(1/ &)* <0.01x(0) = & >100"* =100*""*
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