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Decoupling

e Handling MIMO processes

— MIMO process can be converted into SISO process.
 Neglect some features to get SISO model
 Cannot be done always

— Decouple the control gain matrix K and estimator gain L.
 Depending on the importance, neglect some gains.
e Simpler
 Performance degradation
 Examples
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Time-Varying Optimal Control

e Cost function
— A discrete plant: x(k +1) = ®x(k)+ T'u(k)

- 1 al T T
minJ/ =23 [x’ ()Qx(k) +u’ (k)Quu(k)]

— Q, and Q, are nonnegative symmetric weighting matrix

— Plant model works as constraints.
e Lagrange multiplier: A(k)
min J= ZN: [% x' (k)Qx(k)+ %uT (F)Qu(k)+ A" (k+1)(—x(k +1) + ®x(k) + Tu(k))]

u(k),x(k),r(k)

— minimization & _ u' (K)Q,+A (k+1)C=0 (control equations)
ou(k)
oJ
=—Xx(k+1)+®x(k)+T'u(k)=0 (state equations
kD) (k +1) + ®x(k) + T'u(k) ( q )

el _ x (K)Q, —A"(k)+ A" (k+1)® =0 (adjoint equations)

ox(k)
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— Control law: u(k)=-Q;'T"A(k+1)
— Lagrange multiplier update:
Mk) = @ Mk +1)+Q x(k) = Mk +1) = @ "A(k) — @ Q,x(k)
— Optimal control problem (Two-point boundary-value problem)

 x(0) and u(0) are known, but A(0) is unknown.
* Since u(NV) has no effect on x(N), A(N+1)=0.

X(k) = Ox(k 1)+ Tu(k -1) Boundary Conditions
Mk +1)=®"L(k)-®"Q,x(k) AMN)=Qx(N)
u(k)=-Q,' T' Mk +1) x(0) =x,

» If Nis decided, u(k) will be obtained by solving above two-point
boundary-value problem. (Not easy)

* The obtained solution, u(%) is the optimal control policy.

CBE495 Process Control Application Korea University V-4



e Sweep method (by Bryson and Ho, 1975)
— Assume A(k) = S(k)x(k).
Q.u(k) =-I"S(k+1)x(k +1)=-T"S(k +1)(®x(k) + Tu(k))
= u(k)=—(Q, +I'"S(k + D) 'T'S(k + 1)®x(k) = -R'T'S(k + 1) Dx(k)
where R=Q, +I''S(k+1)I’
— Solution of S(k)
ME) = "Mk +1) + Q,x(k) = S(k)x(k) = ®"S(k + D)x(k +1) + Q,x(k)
= S(k)x(k) = ®"S(k + 1)(@x(k) - TR'T"S(k +1)®x(k)) + Q,x(k)
= [S(k)-®'S(k +1)®+®'S(k+DI'R'T'S(k +1)®-Q, Ix(k) =0
 Discrete Riccati equation
S(k)=®"[S(k+1)-S(k+DI'R'T'S(k +1)]® +Q,

» Single boundary condition: S(N)=Q,.
 The recursive equation must be solved backward.
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— Optimal time-varying feedback gain, K(k)
u(k) = —K(k)x(k)
where K(k)=[Q, +T''S(k+DI'T'IT"S(k +1)®

* The optimal gain, K(k), changes at each time but can be pre-
computed if V is known.

e Itis independent of x(0).

— Optimal cost function value

J = %Z[xT(k)le(k) +u’ (F)Q,u(k)—A" (k+Dx(k+1)+ (A" (k) - Q)x(k) —u’ (k)Q,u(k)]

= S0 (xR -3 (k- (k1)

- %XT(O)X(O) —%M (N+1)x(N +1) = %kT(O)x(O) = %xT (0)S(0)x(0)
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LQR Steady-State Optimal Control

* Linear Quadratic Regulator (LQR)

— Infinite time problem of regulation case
— LQR applies to linear systems with quadratic cost function.
— Algebraic Riccati Equation (ARE)
S, =®'[S, -S,TRT'S_1®+Q,
 ARE has two solutions and the right solution should be positive
definite. (J=x’(0)S(0)x(0) is positive)
 Numerical solution should be seek except very few cases.
— Hamilton’s equations or Euler-Lagrange equations
x(k +1) = ®x(k) + Tu(k) = ©x(k) - TQ; T Ak +1)
Mk+1) =@ "L(k)-D"Q,x(k)

) {x(k + 1)} I {cp +TQ, T’®'Q, -IQ,T'®’ } {x(k)

: System dynamics
Mk +1) -0 'Q, o’ MK)
™ Hamiltonian matrix, H,
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— Hamiltonian matrix has 27 eigenvalues. (n stable + n unstable)

e Using z-transform

zX(2) =DPX(2)+TI'U(2) L@ To-TARle
Uz)=—2Q; T'A(z) = {Z_é 1(122_ (DTM A((Z)J ~0
A(z) = Q,X(2) + z®" A(2) 1 B

* Characteristic equation

I-® 10T’ I-® ro;'r’
det{z Q, } — det{z Q } =0

-Q, z'I-9 0 z1-®" +Q,zZI-®)'TQ, T’
= det(zl - @) det((z"'T-®)[I+(z'T-®")"'Q,(zI -®) 'TQ,'T"])=0
= det(zI - @) det(z ' T-®" ) det(I+(z"'T-®")"'Q,(zZI -®) 'TQ,' T")=0

— det(zI-®)=0.(z) is the plant characteristics and det(z''I-®)=a.(z!).
— Called “Reciprocal Root properties

* The system dynamics using u(k)=—K_x(k) will have n stable poles.
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 Eigenvalue Decomposition of Hamiltonian matrix
— Assume that the Hamiltonian matrix, H , is diagonalizable.

B (£ o
H =W'HW-=
0 E

X, X
— Eigenvectors of H, (transformation matrix): W ={ i O}

* * * AI AO
R NN
A A A ) A, Al
— Solution
x(N)| |E™Y 0 || x(0)
h*(N)H 0 ENL*«)J

 Since x* goes to zero as N—oo, A"(0) should be zero.
x(k) = X,x (k) = X,E"x"(0) N x (0) = E*X;'x(k)
ME)=Ax (k)=AE"X(0) Mk)=A,X,'x(k)=S_x(k)

u(k)=-K_x(k) where K_=(Q,+I'S,I"'T'S ®
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e Cost Equivalent
— The cost will be dependent on the sampling time.
— If the cost equivalent is used, the dependency can be reduced.

minJ = Z[X (H)Qx(k)+u” ()Qu(k)] & minJ, = jONA’[xTde +u'Q uldr

N-1

N 1 % j(mw [xX'Q x+u chu]dr:%kz(;[x (k) u (")JBZ gljmm

where {Q“ le}_ IN ' (r) 0 {ch 0 M(I)(r) F(r)}dr
Q, Qo o FT(T) I 0 Q. L y
 Van Loan (1978)
{Qu le} @@, where @, :{ch 0 :|, and @, :|:(I) 1":|
Q, Q, ' g

e Computation of the continuous cost from discrete samples of the
states and control is useful for comparing digital controllers of a
system with different sample rates.
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Optimal Estimation

e Least square estimation
— Linear static process: y=Hx+v (v: measurement error)

— Least squares solution
1 T 1 T aJ T
J=—=v v=—(y-Hx) (y-Hx)=—=(y-Hx) (-H)
2 2 ox

S Hy=HHx=x=HH)'H'y

« Difference between the estimate and the actual value
X-—x=(HH)"'H (Hx+v)-x=H'H)'H'v

 If v has zero mean, the error has zero mean. (Unbiased estimate)

e Covariance of the estimate error
P=E{x—-x)x-Xx)}=E{(H'H)'H vwHMHH)"}
=(H'H)'H'E{vww \HHH)"'
— If v are uncorrelated with one another, and all the element of v have
the same uncertainty,
E{w'}=R=01 = P=H'H)'c’
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— Weighted least squares

J:%VTWV:%(y—Hx)TW(y—Hx) :Z—J:(y—Hx)TW(—H)
X

= H Wy=H WHx = x=(H WH)'H Wy
* Covariance of the estimate error
P=E{(x-x)X-x)"}=E{(H WH) ' H Wvw WHH "WH) "}
= (H'WH) ' H' WE{vv' }WH(H'WH)"
* Best linear unbiased estimate

— A logical choice for W is to let it be inversely proportional to R.
— Need to have a priori mean square error (W=R)
x=(HR'H)'H'Ry
— Covariance
P=(H'R'H)"
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— Recursive least squares
* Problem (subscript o: old data, n: newly acquired data)

= X —
y,| |H, v,
» Best estimate of x: X
H][R' o]H7], [HT[R' o]y,
X:
H || 0 R'|H, H || 0 Ry,

« Best estimate based on only old data

X, =X, +0X
[H,R,'H,IX, =H Ry, P,=(H,R'H,)"
e Correction using new data
[H,R'H 1%, +[H,R'H, +H R 'H [6x=H,R 'y,
oX=[H,R,'H, +H,R 'H, ] "H,R '(y, - H,% )
6x=P H R (y,—H,%,) P,=(P,'+H/R,'H,)"
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e Kalman filter
— Plant: x(k+1)=®x(k)+Tu(k)+I' w(k); y(k)=Hx(k)+ v(k)
— Process and measurement noises: w(k) and v(k)
e Zero mean white noise
Etw(k)} = E{v(k)} =0
Efw@w' ()} =E{N@V ()HI=0 (ifiz))
Efw()w' (k)} =R, E{v(k)v' (k)}=R,
— Optimal estimation (M=P , P(k)=P , H=H , R =R )
X(k) =X(k)+L(k)(y(k) - Hx(k))
where L(k)=P(k)H' (k)R]
P(k)=[M" +H R'H]"
e Using matrix inversion lemma
P(k)=M(k)-M(k)H" (HM(k)H" +R )" HM(k)

where M(k) is the covariance of the state estimate before measurement.
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— Covariance update
X(k) = ®x(k-1)+Tu(k -1)
x(k+1)—X(k+1) =D®(x(k)—x(k))+ ' w(k)
M(k+1) = E{(x(k +1)-X(k +1))(x(k +1) = X(k +1))"}
= E{®(x(k) - X(k))(x(k) - (k))' @' + T \w(k)w' (k)I'}’}
P(k) = E{(x(k) - X(k))(x(k) - %(k))' }, R, =E{w(k)w’ (k)}
M(k +1)=®P(k)®" +T' R T

— Kalman filter equations

e Measurement update
X(k) = X(k)+P()H' (k)R (y(k) - HX(k))
P(k) =M(k)-M(k)H' (HM(k)H" +R )™ HM(k)

 Time update
X(k+1)=®x(k)+Tu(k)
M(k+1)=®P(k)®" +T' R T,

* The initial condition for state and covariance should be known.
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 Tuning parameters

— Measurement noise covariance, R, is based on sensor accuracy.

» High R, makes the estimate to rely less on the measurements. Thus, the
measurement errors would not be reflected on the estimate too much.

» Low R, makes the estimate to rely more on the measurements. Thus, the
measurement errors changes the estimate rapidly.

— Process noise covariance, R, is based on process nature.
» White noise assumption is a mathematical artifice for simplification.
» R, is crudely accounting for unknown disturbances or model error.

* Noise matrices and discrete equivalents
R, =E{w(k)w' (k)}, R, =E{v(k)V' (k)}
E{w(mw' (1)} =R, 6(n-7), E{v(nVv (2)}=R,,,6(11-7)
— When A47'is very small compared to the system time constant (z.),
R, Eprsd /AT, R, =Rvpsd / AT
R, =2t EW ()}, R, =20.E{H°(@0))

wpsd — vpsd
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— Linear Quadratic Gaussian (LQG) problem
e Estimator gain will reach steady state eventually.

Substantial simplification is possible if constant gain is adopted.

Assumption: noise has a Gaussian distribution
Comparison with LQR: Dual of LQG
M(k) = S(k) —S(k)T[Q, + T'S(k)LT'T"S(k) o, PO =M(k) ~M(k)H" (HM(k)H" +R,) " HM(k)

S(k)=®"M(k+1)®+Q, M(k +1) = ®P(k)®" + T R I
q _|®+TQT'e’Q, -rQ/T'e”| . [@'+H'RHI® TR, -H'R'HO
i ~®7Q, o’ ‘ ~® TR, I @

Steady-state Kalman filter gain
S, =AX,' &M, =A X/
K =Q,+I''S,I)'T'S, ®<L =M H (HM _H +R )"
where [X;; A/ are the eigenvectors of H_ associated with its stable
eigenvalues.

— Assumption of Gaussian noise is not necessary, but with this
assumption, the LQG become maximum likelihood estimate.
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Implementation Issues

e Selection of weighting matrices Q, and Q,
— The states enter the cost via the important outputs

J = %Z[XT (F)Q,x(k) +u’ (k)Q,u(k)] = J = %Z[pr (k)H'Q Hx(k) +u’ (£)Q,u(k)]

where Q, and Q, are diagonal matrices.

 The pis a tuning parameter deciding the relative importance
between errors and input movements.

— Bryson’s rule

* Vimax I8 the maximum deviation of the output y, and u; . is the
maximum value for the input u..

Ql,ii = l/yimax and Q2,ii :1/uz%max

CBE495 Process Control Application Korea University Iv-18



e Pincer Procedure

— If all the poles are inside a circle of radius 1/« (a=>1), every
transient in the closed loop will decay at least as faster as 1/

=1i[xT (K)Q,x(k) +u’ (H)Qu(k)lr™

1 i [z'Qz+V' (k)sz]a%

Z[(a x)' Q,(a'x) +(a'w)' Q, (a'u)] = 0

Where 2(0)=ctx(k), v(k)=cAv(k).

— The state equation
a""x(k +1) = "' (®x(k) + Tu(k)) = z(k +1) = a®(a"x(k)) + al (e u(k))

— z(k +1) = a®z(k) + alv(k)
— State feedback control (LQR)

* Find the feedback gain for system (a®, al’)
v =-Kz = a*u(k) = -K(a"x(k)) = u(k) = -Kx(k)

e Choice of oz x(t. /AT) ~ x(0)(1/ )" <0.01x(0) = & >100"% =100/
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