CBE507 LECTURE IV Multivariable and Optimal Control

Professor Dae Ryook Yang

Fall 2013

Dept. of Chemical and Biological Engineering

Korea University

Decoupling

Handling MIMO processes

- MIMO process can be converted into SISO process.
 - Neglect some features to get SISO model
 - Cannot be done always
- Decouple the control gain matrix K and estimator gain L.
 - Depending on the importance, neglect some gains.
 - Simpler
 - Performance degradation
 - Examples

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = -\begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \Rightarrow \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = -\begin{bmatrix} K_{11} & K_{12} & 0 & 0 \\ 0 & 0 & K_{23} & K_{24} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}_{c}(k+1) \\ \mathbf{x}_{s}(k+1) \end{bmatrix} = -\begin{bmatrix} \mathbf{\Phi}_{cc} & \mathbf{\Phi}_{cs} \\ \mathbf{\Phi}_{sc} & \mathbf{\Phi}_{ss} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{c}(k) \\ \mathbf{x}_{s}(k) \end{bmatrix} + \begin{bmatrix} \mathbf{\Gamma}_{c} \\ \mathbf{\Gamma}_{s} \end{bmatrix} u(k) \Rightarrow \frac{\overline{\mathbf{x}}_{c}(k+1) = \mathbf{\Phi}_{cc}\overline{\mathbf{x}}_{c}(k) + \mathbf{\Phi}_{cs}\overline{\mathbf{x}}_{s}(k) + \mathbf{\Gamma}_{c}u(k) + \mathbf{L}_{c}(y_{c} - \overline{y}_{c})}{\overline{\mathbf{x}}_{s}(k+1) = \mathbf{\Phi}_{sc}\overline{\mathbf{x}}_{c}(k) + \mathbf{\Phi}_{ss}\overline{\mathbf{x}}_{s}(k) + \mathbf{\Gamma}_{s}u(k) + \mathbf{L}_{s}(y_{s} - \overline{y}_{s})$$

Time-Varying Optimal Control

Cost function

- A discrete plant: $\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k)$

$$\min_{\mathbf{u}(k)} J = \frac{1}{2} \sum_{k=0}^{N} [\mathbf{x}^{T}(k) \mathbf{Q}_{1} \mathbf{x}(k) + \mathbf{u}^{T}(k) \mathbf{Q}_{2} \mathbf{u}(k)]$$

- \mathbf{Q}_1 and \mathbf{Q}_2 are nonnegative symmetric weighting matrix
- Plant model works as constraints.
- Lagrange multiplier: $\lambda(k)$

$$\min_{\mathbf{u}(k),\mathbf{x}(k),\lambda(k)} J = \sum_{k=0}^{N} \left[\frac{1}{2} \mathbf{x}^{T}(k) \mathbf{Q}_{1} \mathbf{x}(k) + \frac{1}{2} \mathbf{u}^{T}(k) \mathbf{Q}_{2} \mathbf{u}(k) + \lambda^{T}(k+1) (-\mathbf{x}(k+1) + \mathbf{\Phi} \mathbf{x}(k) + \Gamma \mathbf{u}(k)) \right]$$

- **minimization**
$$\frac{\partial J}{\partial \mathbf{u}(k)} = \mathbf{u}^{T}(k)\mathbf{Q}_{2} + \boldsymbol{\lambda}^{T}(k+1)\boldsymbol{\Gamma} = 0 \qquad \text{(control equations)}$$

$$\frac{\partial J}{\partial \boldsymbol{\lambda}(k+1)} = -\mathbf{x}(k+1) + \boldsymbol{\Phi}\mathbf{x}(k) + \boldsymbol{\Gamma}\mathbf{u}(k) = 0 \quad \text{(state equations)}$$

$$\frac{\partial J}{\partial \mathbf{x}(k)} = \mathbf{x}^{T}(k)\mathbf{Q}_{1} - \boldsymbol{\lambda}^{T}(k) + \boldsymbol{\lambda}^{T}(k+1)\boldsymbol{\Phi} = 0 \quad \text{(adjoint equations)}$$

- Control law: $\mathbf{u}(k) = -\mathbf{Q}_2^{-1} \mathbf{\Gamma}^T \lambda(k+1)$
- Lagrange multiplier update:

$$\lambda(k) = \mathbf{\Phi}^{T} \lambda(k+1) + \mathbf{Q}_{1} \mathbf{x}(k) \Rightarrow \lambda(k+1) = \mathbf{\Phi}^{-T} \lambda(k) - \mathbf{\Phi}^{-T} \mathbf{Q}_{1} \mathbf{x}(k)$$

- Optimal control problem (Two-point boundary-value problem)
 - x(0) and u(0) are known, but $\lambda(0)$ is unknown.
 - Since $\mathbf{u}(N)$ has no effect on $\mathbf{x}(N)$, $\lambda(N+1)=0$.

$$\mathbf{x}(k) = \mathbf{\Phi}\mathbf{x}(k-1) + \mathbf{\Gamma}\mathbf{u}(k-1)$$
Boundary Conditions

$$\lambda(k+1) = \mathbf{\Phi}^{-T}\lambda(k) - \mathbf{\Phi}^{-T}\mathbf{Q}_{1}\mathbf{x}(k)$$
$$\lambda(N) = \mathbf{Q}_{1}\mathbf{x}(N)$$
$$\mathbf{u}(k) = -\mathbf{Q}_{2}^{-1}\mathbf{\Gamma}^{T}\lambda(k+1)$$
$$\mathbf{x}(0) = \mathbf{x}_{0}$$

- If N is decided, $\mathbf{u}(k)$ will be obtained by solving above two-point boundary-value problem. (Not easy)
- The obtained solution, u(k) is the optimal control policy.

Sweep method (by Bryson and Ho, 1975)

- Assume $\lambda(k) = S(k)x(k)$.

$$\mathbf{Q}_{2}\mathbf{u}(k) = -\mathbf{\Gamma}^{T}\mathbf{S}(k+1)\mathbf{x}(k+1) = -\mathbf{\Gamma}^{T}\mathbf{S}(k+1)(\mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k))$$

$$\Rightarrow \mathbf{u}(k) = -(\mathbf{Q}_{2} + \mathbf{\Gamma}^{T}\mathbf{S}(k+1)\mathbf{\Gamma})^{-1}\mathbf{\Gamma}^{T}\mathbf{S}(k+1)\mathbf{\Phi}\mathbf{x}(k) = -\mathbf{R}^{-1}\mathbf{\Gamma}^{T}\mathbf{S}(k+1)\mathbf{\Phi}\mathbf{x}(k)$$
where $\mathbf{R} = \mathbf{Q}_{2} + \mathbf{\Gamma}^{T}\mathbf{S}(k+1)\mathbf{\Gamma}$

- Solution of S(k)

$$\lambda(k) = \mathbf{\Phi}^{T} \lambda(k+1) + \mathbf{Q}_{1} \mathbf{x}(k) \Rightarrow \mathbf{S}(k) \mathbf{x}(k) = \mathbf{\Phi}^{T} \mathbf{S}(k+1) \mathbf{x}(k+1) + \mathbf{Q}_{1} \mathbf{x}(k)$$

$$\Rightarrow \mathbf{S}(k) \mathbf{x}(k) = \mathbf{\Phi}^{T} \mathbf{S}(k+1) (\mathbf{\Phi} \mathbf{x}(k) - \mathbf{\Gamma} \mathbf{R}^{-1} \mathbf{\Gamma}^{T} \mathbf{S}(k+1) \mathbf{\Phi} \mathbf{x}(k)) + \mathbf{Q}_{1} \mathbf{x}(k)$$

$$\Rightarrow [\mathbf{S}(k) - \mathbf{\Phi}^{T} \mathbf{S}(k+1) \mathbf{\Phi} + \mathbf{\Phi}^{T} \mathbf{S}(k+1) \mathbf{\Gamma} \mathbf{R}^{-1} \mathbf{\Gamma}^{T} \mathbf{S}(k+1) \mathbf{\Phi} - \mathbf{Q}_{1}] \mathbf{x}(k) = 0$$

Discrete Riccati equation

$$\mathbf{S}(k) = \mathbf{\Phi}^{T} [\mathbf{S}(k+1) - \mathbf{S}(k+1) \mathbf{\Gamma} \mathbf{R}^{-1} \mathbf{\Gamma}^{T} \mathbf{S}(k+1)] \mathbf{\Phi} + \mathbf{Q}_{1}$$

- Single boundary condition: $S(N)=Q_1$.
- The recursive equation must be solved backward.

- Optimal time-varying feedback gain, K(k)

$$\mathbf{u}(k) = -\mathbf{K}(k)\mathbf{x}(k)$$
where $\mathbf{K}(k) = [\mathbf{Q}_2 + \mathbf{\Gamma}^T \mathbf{S}(k+1)\mathbf{\Gamma}]^{-1}\mathbf{\Gamma}^T \mathbf{S}(k+1)\mathbf{\Phi}$

- The optimal gain, K(k), changes at each time but can be precomputed if N is known.
- It is independent of x(0).
- Optimal cost function value

$$J = \frac{1}{2} \sum_{k=0}^{N} [\mathbf{x}^{T}(k)\mathbf{Q}_{1}\mathbf{x}(k) + \mathbf{u}^{T}(k)\mathbf{Q}_{2}\mathbf{u}(k) - \boldsymbol{\lambda}^{T}(k+1)\mathbf{x}(k+1) + (\boldsymbol{\lambda}^{T}(k) - \mathbf{Q}_{1})\mathbf{x}(k) - \mathbf{u}^{T}(k)\mathbf{Q}_{2}\mathbf{u}(k)]$$

$$= \frac{1}{2} \sum_{k=0}^{N} [\boldsymbol{\lambda}^{T}(k)\mathbf{x}(k) - \boldsymbol{\lambda}^{T}(k+1)\mathbf{x}(k+1)]$$

$$= \frac{1}{2} \boldsymbol{\lambda}^{T}(0)\mathbf{x}(0) - \frac{1}{2} \boldsymbol{\lambda}^{T}(N+1)\mathbf{x}(N+1) = \frac{1}{2} \boldsymbol{\lambda}^{T}(0)\mathbf{x}(0) = \frac{1}{2} \mathbf{x}^{T}(0)\mathbf{S}(0)\mathbf{x}(0)$$

LQR Steady-State Optimal Control

Linear Quadratic Regulator (LQR)

- Infinite time problem of regulation case
- LQR applies to linear systems with quadratic cost function.
- Algebraic Riccati Equation (ARE)

$$\mathbf{S}_{\infty} = \mathbf{\Phi}^{T} [\mathbf{S}_{\infty} - \mathbf{S}_{\infty} \mathbf{\Gamma} \mathbf{R}^{-1} \mathbf{\Gamma}^{T} \mathbf{S}_{\infty}] \mathbf{\Phi} + \mathbf{Q}_{1}$$

- ARE has two solutions and the right solution should be positive definite. $(J=x^T(0)S(0)x(0))$ is positive)
- Numerical solution should be seek except very few cases.
- Hamilton's equations or Euler-Lagrange equations

$$\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k) = \mathbf{\Phi}\mathbf{x}(k) - \mathbf{\Gamma}\mathbf{Q}_{2}^{-1}\mathbf{\Gamma}^{T}\lambda(k+1)$$
$$\lambda(k+1) = \mathbf{\Phi}^{-T}\lambda(k) - \mathbf{\Phi}^{-T}\mathbf{Q}_{1}\mathbf{x}(k)$$

$$\Rightarrow \begin{bmatrix} \mathbf{x}(k+1) \\ \boldsymbol{\lambda}(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{\Phi} + \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \mathbf{\Phi}^{-T} \mathbf{Q}_{1} & -\mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \mathbf{\Phi}^{-T} \\ -\mathbf{\Phi}^{-T} \mathbf{Q}_{1} & \mathbf{\Phi}^{-T} \end{bmatrix} \begin{bmatrix} \mathbf{x}(k) \\ \boldsymbol{\lambda}(k) \end{bmatrix} : \text{System dynamics}$$

- Hamiltonian matrix has 2n eigenvalues. (n stable + n unstable)
 - Using z-transform

$$Z\mathbf{X}(z) = \mathbf{\Phi}\mathbf{X}(z) + \mathbf{\Gamma}\mathbf{U}(z)$$

$$\mathbf{U}(z) = -z\mathbf{Q}_{2}^{-1}\mathbf{\Gamma}^{T}\mathbf{\Lambda}(z) \Rightarrow \begin{bmatrix} z\mathbf{I} - \mathbf{\Phi} & \mathbf{\Gamma}\mathbf{Q}_{2}^{-1}\mathbf{\Gamma}^{T} \\ -\mathbf{Q}_{1} & z^{-1}\mathbf{I} - \mathbf{\Phi}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{X}(z) \\ z\mathbf{\Lambda}(z) \end{bmatrix} = \mathbf{0}$$

$$\mathbf{\Lambda}(z) = \mathbf{Q}_{1}\mathbf{X}(z) + z\mathbf{\Phi}^{T}\mathbf{\Lambda}(z)$$

Characteristic equation

$$\det\begin{bmatrix} z\mathbf{I} - \mathbf{\Phi} & \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \\ -\mathbf{Q}_{1} & z^{-1}\mathbf{I} - \mathbf{\Phi}^{T} \end{bmatrix} = \det\begin{bmatrix} z\mathbf{I} - \mathbf{\Phi} & \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \\ \mathbf{0} & z^{-1}\mathbf{I} - \mathbf{\Phi}^{T} + \mathbf{Q}_{1}(z\mathbf{I} - \mathbf{\Phi})^{-1} \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \end{bmatrix} = \mathbf{0}$$

$$\Rightarrow \det(z\mathbf{I} - \mathbf{\Phi}) \det((z^{-1}\mathbf{I} - \mathbf{\Phi}^{T})[\mathbf{I} + (z^{-1}\mathbf{I} - \mathbf{\Phi}^{T})^{-1}\mathbf{Q}_{1}(z\mathbf{I} - \mathbf{\Phi})^{-1} \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T}]) = \mathbf{0}$$

$$\Rightarrow \det(z\mathbf{I} - \mathbf{\Phi}) \det(z^{-1}\mathbf{I} - \mathbf{\Phi}^{T}) \det(\mathbf{I} + (z^{-1}\mathbf{I} - \mathbf{\Phi}^{T})^{-1}\mathbf{Q}_{1}(z\mathbf{I} - \mathbf{\Phi})^{-1} \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T}) = \mathbf{0}$$

$$- \det(z\mathbf{I} - \mathbf{\Phi}) = \alpha(z) \text{ is the plant characteristics and } \det(z^{-1}\mathbf{I} - \mathbf{\Phi}) = \alpha(z^{-1}).$$

- Called "Reciprocal Root properties
- The system dynamics using $\mathbf{u}(k) = -\mathbf{K}_{\infty} \mathbf{x}(k)$ will have n stable poles.

Eigenvalue Decomposition of Hamiltonian matrix

- Assume that the Hamiltonian matrix, H_c , is diagonalizable.

$$\mathbf{H}_{c}^{*} = \mathbf{W}^{-1}\mathbf{H}_{c}\mathbf{W} = \begin{bmatrix} \mathbf{E}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{E} \end{bmatrix}$$

- Eigenvectors of \mathbf{H}_c (transformation matrix): $\mathbf{W} = \begin{bmatrix} \mathbf{X}_I & \mathbf{X}_O \\ \mathbf{\Lambda}_I & \mathbf{\Lambda}_O \end{bmatrix}$

$$\begin{bmatrix} \mathbf{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} = \mathbf{W}^{-1} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\lambda} \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\lambda} \end{bmatrix} = \mathbf{W} \begin{bmatrix} \mathbf{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} = \begin{bmatrix} \mathbf{X}_I & \mathbf{X}_O \\ \boldsymbol{\Lambda}_I & \boldsymbol{\Lambda}_O \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix}$$

Solution

$$\begin{bmatrix} \mathbf{x}^*(N) \\ \boldsymbol{\lambda}^*(N) \end{bmatrix} = \begin{bmatrix} \mathbf{E}^{-N} & \mathbf{0} \\ \mathbf{0} & \mathbf{E}^{N} \end{bmatrix} \begin{bmatrix} \mathbf{x}^*(0) \\ \boldsymbol{\lambda}^*(0) \end{bmatrix}$$

• Since \mathbf{x}^* goes to zero as $N \rightarrow \infty$, $\lambda^*(0)$ should be zero.

$$\mathbf{x}(k) = \mathbf{X}_{I}\mathbf{x}^{*}(k) = \mathbf{X}_{I}\mathbf{E}^{-k}\mathbf{x}^{*}(0) \Rightarrow \mathbf{x}^{*}(0) = \mathbf{E}^{k}\mathbf{X}_{I}^{-1}\mathbf{x}(k)$$
$$\lambda(k) = \mathbf{\Lambda}_{I}\mathbf{x}^{*}(k) = \mathbf{\Lambda}_{I}\mathbf{E}^{-k}\mathbf{x}^{*}(0) \Rightarrow \lambda(k) = \mathbf{\Lambda}_{I}\mathbf{X}_{I}^{-1}\mathbf{x}(k) = \mathbf{S}_{\infty}\mathbf{x}(k)$$

$$\mathbf{u}(k) = -\mathbf{K}_{\infty}\mathbf{x}(k)$$
 where $\mathbf{K}_{\infty} = (\mathbf{Q}_{2} + \mathbf{\Gamma}^{T}\mathbf{S}_{\infty}\mathbf{\Gamma})^{-1}\mathbf{\Gamma}^{T}\mathbf{S}_{\infty}\mathbf{\Phi}$

Cost Equivalent

- The cost will be dependent on the sampling time.
- If the cost equivalent is used, the dependency can be reduced.

$$\min_{\mathbf{u}(k)} J = \frac{1}{2} \sum_{k=0}^{N} [\mathbf{x}^{T}(k) \mathbf{Q}_{1} \mathbf{x}(k) + \mathbf{u}^{T}(k) \mathbf{Q}_{2} \mathbf{u}(k)] \Leftrightarrow \min_{\mathbf{u}(k)} J_{c} = \frac{1}{2} \int_{0}^{N\Delta t} [\mathbf{x}^{T} \mathbf{Q}_{c1} \mathbf{x} + \mathbf{u}^{T} \mathbf{Q}_{c2} \mathbf{u}] d\tau$$

$$J_{c} = \frac{1}{2} \sum_{k=0}^{N-1} \int_{k\Delta t}^{(k+1)\Delta t} [\mathbf{x}^{T} \mathbf{Q}_{c1} \mathbf{x} + \mathbf{u}^{T} \mathbf{Q}_{c2} \mathbf{u}] d\tau = \frac{1}{2} \sum_{k=0}^{N-1} [\mathbf{x}^{T}(k) \quad \mathbf{u}^{T}(k)] \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}(k) \\ \mathbf{u}(k) \end{bmatrix}$$

where
$$\begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} = \int_0^{\Delta t} \begin{bmatrix} \mathbf{\Phi}^T(\tau) & \mathbf{0} \\ \mathbf{\Gamma}^T(\tau) & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{c1} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{c2} \end{bmatrix} \begin{bmatrix} \mathbf{\Phi}(\tau) & \mathbf{\Gamma}(\tau) \\ \mathbf{0} & \mathbf{I} \end{bmatrix} d\tau$$

• Van Loan (1978)

$$\begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} = \mathbf{\Phi}_{22}^T \mathbf{\Phi}_{12} \text{ where } \mathbf{\Phi}_{12} = \begin{bmatrix} \mathbf{Q}_{c1} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{c2} \end{bmatrix}, \text{ and } \mathbf{\Phi}_{22} = \begin{bmatrix} \mathbf{\Phi} & \mathbf{\Gamma} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

• Computation of the continuous cost from discrete samples of the states and control is useful for comparing digital controllers of a system with different sample rates.

Optimal Estimation

Least square estimation

- Linear static process: y=Hx+v (v: measurement error)
- Least squares solution

$$J = \frac{1}{2} \mathbf{v}^{T} \mathbf{v} = \frac{1}{2} (\mathbf{y} - \mathbf{H} \mathbf{x})^{T} (\mathbf{y} - \mathbf{H} \mathbf{x}) \Rightarrow \frac{\partial J}{\partial \mathbf{x}} = (\mathbf{y} - \mathbf{H} \mathbf{x})^{T} (-\mathbf{H})$$
$$\Rightarrow \mathbf{H}^{T} \mathbf{y} = \mathbf{H}^{T} \mathbf{H} \mathbf{x} \Rightarrow \hat{\mathbf{x}} = (\mathbf{H}^{T} \mathbf{H})^{-1} \mathbf{H}^{T} \mathbf{y}$$

Difference between the estimate and the actual value

$$\hat{\mathbf{x}} - \mathbf{x} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T (\mathbf{H} \mathbf{x} + \mathbf{v}) - \mathbf{x} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{v}$$

- If v has zero mean, the error has zero mean. (Unbiased estimate)
- Covariance of the estimate error

$$\mathbf{P} = E\{(\hat{\mathbf{x}} - \mathbf{x})(\hat{\mathbf{x}} - \mathbf{x})^T\} = E\{(\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{v} \mathbf{v}^T \mathbf{H} (\mathbf{H}^T \mathbf{H})^{-1}\}$$
$$= (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T E\{\mathbf{v} \mathbf{v}^T\} \mathbf{H} (\mathbf{H}^T \mathbf{H})^{-1}$$

 If v are uncorrelated with one another, and all the element of v have the same uncertainty,

$$E\{\mathbf{v}\mathbf{v}^T\} = \mathbf{R} = \sigma^2 \mathbf{I} \implies \mathbf{P} = (\mathbf{H}^T\mathbf{H})^{-1}\sigma^2$$

Weighted least squares

$$J = \frac{1}{2} \mathbf{v}^{T} \mathbf{W} \mathbf{v} = \frac{1}{2} (\mathbf{y} - \mathbf{H} \mathbf{x})^{T} \mathbf{W} (\mathbf{y} - \mathbf{H} \mathbf{x}) \Rightarrow \frac{\partial J}{\partial \mathbf{x}} = (\mathbf{y} - \mathbf{H} \mathbf{x})^{T} \mathbf{W} (-\mathbf{H})$$
$$\Rightarrow \mathbf{H}^{T} \mathbf{W} \mathbf{y} = \mathbf{H}^{T} \mathbf{W} \mathbf{H} \mathbf{x} \Rightarrow \hat{\mathbf{x}} = (\mathbf{H}^{T} \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^{T} \mathbf{W} \mathbf{y}$$

Covariance of the estimate error

$$\mathbf{P} = E\{(\hat{\mathbf{x}} - \mathbf{x})(\hat{\mathbf{x}} - \mathbf{x})^T\} = E\{(\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{W} \mathbf{v} \mathbf{v}^T \mathbf{W} \mathbf{H} (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1}\}$$
$$= (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{W} E\{\mathbf{v} \mathbf{v}^T\} \mathbf{W} \mathbf{H} (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1}$$

- Best linear unbiased estimate
 - A logical choice for W is to let it be inversely proportional to R.
 - Need to have a priori mean square error (W=R⁻¹)

$$\hat{\mathbf{x}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y}$$

Covariance

$$\mathbf{P} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}$$

- Recursive least squares
 - Problem (subscript o: old data, n: newly acquired data)

$$\begin{bmatrix} \mathbf{y}_o \\ \mathbf{y}_n \end{bmatrix} = \begin{bmatrix} \mathbf{H}_o \\ \mathbf{H}_n \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{v}_o \\ \mathbf{v}_n \end{bmatrix}$$

• Best estimate of x: $\hat{\mathbf{x}}$

$$\begin{bmatrix} \mathbf{H}_o \\ \mathbf{H}_n \end{bmatrix}^T \begin{bmatrix} \mathbf{R}_o^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_n^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{H}_o \\ \mathbf{H}_n \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} \mathbf{H}_o \\ \mathbf{H}_n \end{bmatrix}^T \begin{bmatrix} \mathbf{R}_o^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_n^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{y}_o \\ \mathbf{y}_n \end{bmatrix}$$

Best estimate based on only old data

$$\hat{\mathbf{x}}_{n} = \hat{\mathbf{x}}_{o} + \delta \hat{\mathbf{x}}$$

$$[\mathbf{H}_{o}^{T} \mathbf{R}_{o}^{-1} \mathbf{H}_{o}] \hat{\mathbf{x}}_{o} = \mathbf{H}_{o}^{T} \mathbf{R}_{o}^{-1} \mathbf{y}_{o} \qquad \mathbf{P}_{o} = (\mathbf{H}_{o}^{T} \mathbf{R}_{o}^{-1} \mathbf{H}_{o})^{-1}$$

Correction using new data

$$[\mathbf{H}_{n}^{T}\mathbf{R}_{n}^{-1}\mathbf{H}_{n}]\hat{\mathbf{x}}_{o} + [\mathbf{H}_{o}^{T}\mathbf{R}_{o}^{-1}\mathbf{H}_{o} + \mathbf{H}_{n}^{T}\mathbf{R}_{n}^{-1}\mathbf{H}_{n}]\delta\hat{\mathbf{x}} = \mathbf{H}_{n}^{T}\mathbf{R}_{n}^{-1}\mathbf{y}_{n}$$

$$\delta\hat{\mathbf{x}} = [\mathbf{H}_{o}^{T}\mathbf{R}_{o}^{-1}\mathbf{H}_{o} + \mathbf{H}_{n}^{T}\mathbf{R}_{n}^{-1}\mathbf{H}_{n}]^{-1}\mathbf{H}_{n}^{T}\mathbf{R}_{n}^{-1}(\mathbf{y}_{n} - \mathbf{H}_{n}\hat{\mathbf{x}}_{o})$$

$$\mathbf{P}_{n} = (\mathbf{P}_{o}^{-1} + \mathbf{H}_{n}^{T}\mathbf{R}_{n}^{-1}\mathbf{H}_{n})^{-1}$$

Kalman filter

- Plant: $\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k) + \mathbf{\Gamma}_1\mathbf{w}(k)$; $\mathbf{y}(k) = \mathbf{H}\mathbf{x}(k) + \mathbf{v}(k)$
- Process and measurement noises: w(k) and v(k)
 - Zero mean white noise

$$E\{\mathbf{w}(k)\} = E\{\mathbf{v}(k)\} = \mathbf{0}$$

$$E\{\mathbf{w}(i)\mathbf{w}^{T}(j)\} = E\{\mathbf{v}(i)\mathbf{v}^{T}(j)\} = \mathbf{0} \quad (\text{if } i \neq j)$$

$$E\{\mathbf{w}(k)\mathbf{w}^{T}(k)\} = \mathbf{R}_{\mathbf{w}}, \quad E\{\mathbf{v}(k)\mathbf{v}^{T}(k)\} = \mathbf{R}_{\mathbf{v}}$$

- Optimal estimation (M=P_o, P(k)=P_n, H=H_n, R_v=R_n)

$$\hat{\mathbf{x}}(k) = \overline{\mathbf{x}}(k) + \mathbf{L}(k)(\mathbf{y}(k) - \mathbf{H}\overline{\mathbf{x}}(k))$$
where $\mathbf{L}(k) = \mathbf{P}(k)\mathbf{H}^{T}(k)\mathbf{R}_{\mathbf{v}}^{-1}$

$$\mathbf{P}(k) = [\mathbf{M}^{-1} + \mathbf{H}^{T}\mathbf{R}_{\mathbf{v}}^{-1}\mathbf{H}]^{-1}$$

Using matrix inversion lemma

$$P(k) = M(k) - M(k)H^{T}(HM(k)H^{T} + R_{v})^{-1}HM(k)$$

where $M(k)$ is the covariance of the state estimate before measurement.

Covariance update

$$\bar{\mathbf{x}}(k) = \mathbf{\Phi}\hat{\mathbf{x}}(k-1) + \mathbf{\Gamma}\mathbf{u}(k-1)
\mathbf{x}(k+1) - \bar{\mathbf{x}}(k+1) = \mathbf{\Phi}(\mathbf{x}(k) - \hat{\mathbf{x}}(k)) + \mathbf{\Gamma}_1\mathbf{w}(k)
\mathbf{M}(k+1) = E\{(\mathbf{x}(k+1) - \bar{\mathbf{x}}(k+1))(\mathbf{x}(k+1) - \bar{\mathbf{x}}(k+1))^T\}
= E\{\mathbf{\Phi}(\mathbf{x}(k) - \hat{\mathbf{x}}(k))(\mathbf{x}(k) - \hat{\mathbf{x}}(k))^T\mathbf{\Phi}^T + \mathbf{\Gamma}_1\mathbf{w}(k)\mathbf{w}^T(k)\mathbf{\Gamma}_1^T\}
\mathbf{P}(k) = E\{(\mathbf{x}(k) - \hat{\mathbf{x}}(k))(\mathbf{x}(k) - \hat{\mathbf{x}}(k))^T\}, \quad \mathbf{R}_{\mathbf{w}} = E\{\mathbf{w}(k)\mathbf{w}^T(k)\}
\mathbf{M}(k+1) = \mathbf{\Phi}\mathbf{P}(k)\mathbf{\Phi}^T + \mathbf{\Gamma}_1\mathbf{R}_{\mathbf{w}}\mathbf{\Gamma}_1^T$$

- Kalman filter equations
 - Measurement update

$$\hat{\mathbf{x}}(k) = \overline{\mathbf{x}}(k) + \mathbf{P}(k)\mathbf{H}^{T}(k)\mathbf{R}_{\mathbf{v}}^{-1}(\mathbf{y}(k) - \mathbf{H}\overline{\mathbf{x}}(k))$$

$$\mathbf{P}(k) = \mathbf{M}(k) - \mathbf{M}(k)\mathbf{H}^{T}(\mathbf{H}\mathbf{M}(k)\mathbf{H}^{T} + \mathbf{R}_{\mathbf{v}})^{-1}\mathbf{H}\mathbf{M}(k)$$

• Time update

$$\overline{\mathbf{x}}(k+1) = \mathbf{\Phi}\hat{\mathbf{x}}(k) + \mathbf{\Gamma}\mathbf{u}(k)$$
$$\mathbf{M}(k+1) = \mathbf{\Phi}\mathbf{P}(k)\mathbf{\Phi}^{T} + \mathbf{\Gamma}_{1}\mathbf{R}_{\mathbf{w}}\mathbf{\Gamma}_{1}^{T}$$

The initial condition for state and covariance should be known.

Tuning parameters

- Measurement noise covariance, R_v, is based on sensor accuracy.
 - » High R_v makes the estimate to rely less on the measurements. Thus, the measurement errors would not be reflected on the estimate too much.
 - \gg Low R_v makes the estimate to rely more on the measurements. Thus, the measurement errors changes the estimate rapidly.
- Process noise covariance, R_w, is based on process nature.
 - » White noise assumption is a mathematical artifice for simplification.
 - \gg R_w is crudely accounting for unknown disturbances or model error.
- Noise matrices and discrete equivalents

$$\mathbf{R}_{\mathbf{w}} = E\{\mathbf{w}(k)\mathbf{w}^{T}(k)\}, \quad \mathbf{R}_{\mathbf{v}} = E\{\mathbf{v}(k)\mathbf{v}^{T}(k)\}$$

$$E\{\mathbf{w}(\eta)\mathbf{w}^{T}(\tau)\} = \mathbf{R}_{\mathbf{w}psd}\delta(\eta - \tau), \quad E\{\mathbf{v}(\eta)\mathbf{v}^{T}(\tau)\} = \mathbf{R}_{\mathbf{v}psd}\delta(\eta - \tau)$$

- When ΔT is very small compared to the system time constant (τ_c) ,

$$\mathbf{R}_{\mathbf{w}} \cong \mathbf{R}_{\mathbf{w}psd} / \Delta T, \quad \mathbf{R}_{\mathbf{v}} = \mathbf{R}_{\mathbf{v}psd} / \Delta T$$
$$\mathbf{R}_{\mathbf{w}psd} \cong 2\tau_c E\{w^2(t)\}, \quad \mathbf{R}_{\mathbf{v}psd} = 2\tau_c E\{v^2(t)\}$$

- Linear Quadratic Gaussian (LQG) problem
 - Estimator gain will reach steady state eventually.
 - Substantial simplification is possible if constant gain is adopted.
 - Assumption: noise has a Gaussian distribution
 - Comparison with LQR: Dual of LQG

$$\mathbf{M}(k) = \mathbf{S}(k) - \mathbf{S}(k)\mathbf{\Gamma}[\mathbf{Q}_{2} + \mathbf{\Gamma}^{T}\mathbf{S}(k)\mathbf{\Gamma}]^{-1}\mathbf{\Gamma}^{T}\mathbf{S}(k) \Leftrightarrow \mathbf{P}(k) = \mathbf{M}(k) - \mathbf{M}(k)\mathbf{H}^{T}(\mathbf{H}\mathbf{M}(k)\mathbf{H}^{T} + \mathbf{R}_{v})^{-1}\mathbf{H}\mathbf{M}(k)$$

$$\mathbf{S}(k) = \mathbf{\Phi}^{T}\mathbf{M}(k+1)\mathbf{\Phi} + \mathbf{Q}_{1} \qquad \mathbf{M}(k+1) = \mathbf{\Phi}\mathbf{P}(k)\mathbf{\Phi}^{T} + \mathbf{\Gamma}_{1}\mathbf{R}_{w}\mathbf{\Gamma}_{1}^{T}$$

$$\mathbf{H}_{c} = \begin{bmatrix} \mathbf{\Phi} + \mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \mathbf{\Phi}^{-T} \mathbf{Q}_{1} & -\mathbf{\Gamma} \mathbf{Q}_{2}^{-1} \mathbf{\Gamma}^{T} \mathbf{\Phi}^{-T} \\ -\mathbf{\Phi}^{-T} \mathbf{Q}_{1} & \mathbf{\Phi}^{-T} \end{bmatrix} \Leftrightarrow \mathbf{H}_{e} = \begin{bmatrix} \mathbf{\Phi}^{T} + \mathbf{H}^{T} \mathbf{R}_{v} \mathbf{H} \mathbf{\Gamma} \mathbf{\Phi}^{-1} \mathbf{\Gamma}_{1} \mathbf{R}_{w} \mathbf{\Gamma}_{1}^{T} & -\mathbf{H}^{T} \mathbf{R}_{v}^{-1} \mathbf{H} \mathbf{\Phi}^{-1} \\ -\mathbf{\Phi}^{-1} \mathbf{\Gamma}_{1} \mathbf{R}_{w} \mathbf{\Gamma}_{1}^{T} & \mathbf{\Phi}^{-1} \end{bmatrix}$$

Steady-state Kalman filter gain

$$\mathbf{S}_{\infty} = \mathbf{\Lambda}_{I} \mathbf{X}_{I}^{-1} \Leftrightarrow \mathbf{M}_{\infty} = \mathbf{\Lambda}_{I} \mathbf{X}_{I}^{-1}$$

$$\mathbf{K}_{\infty} = (\mathbf{Q}_{2} + \mathbf{\Gamma}^{T} \mathbf{S}_{\infty} \mathbf{\Gamma})^{-1} \mathbf{\Gamma}^{T} \mathbf{S}_{\infty} \mathbf{\Phi} \Leftrightarrow \mathbf{L}_{\infty} = \mathbf{M}_{\infty} \mathbf{H}^{T} (\mathbf{H} \mathbf{M}_{\infty} \mathbf{H}^{T} + \mathbf{R}_{\mathbf{v}})^{-1}$$

where $[X_I; \Lambda_I]$ are the eigenvectors of H_c associated with its stable eigenvalues.

 Assumption of Gaussian noise is not necessary, but with this assumption, the LQG become maximum likelihood estimate.

Implementation Issues

Selection of weighting matrices Q₁ and Q₂

The states enter the cost via the important outputs

$$J = \frac{1}{2} \sum_{k=0}^{N} [\mathbf{x}^{T}(k) \mathbf{Q}_{1} \mathbf{x}(k) + \mathbf{u}^{T}(k) \mathbf{Q}_{2} \mathbf{u}(k)] \Rightarrow J = \frac{1}{2} \sum_{k=0}^{N} [\rho \mathbf{x}^{T}(k) \mathbf{H}^{T} \overline{\mathbf{Q}}_{1} \mathbf{H} \mathbf{x}(k) + \mathbf{u}^{T}(k) \mathbf{Q}_{2} \mathbf{u}(k)]$$

where $\bar{\mathbf{Q}}_1$ and \mathbf{Q}_2 are diagonal matrices.

- The ρ is a tuning parameter deciding the relative importance between errors and input movements.
- Bryson's rule
 - $y_{i,\text{max}}$ is the maximum deviation of the output y_i , and $u_{i,\text{max}}$ is the maximum value for the input u_i .

$$\bar{\mathbf{Q}}_{1,ii} = 1/y_{i,\text{max}}^2 \text{ and } \mathbf{Q}_{2,ii} = 1/u_{i,\text{max}}^2$$

Pincer Procedure

- If all the poles are inside a circle of radius $1/\alpha$ ($\alpha \ge 1$), every transient in the closed loop will decay at least as faster as $1/\alpha^k$.

$$J_{\alpha} = \frac{1}{2} \sum_{k=0}^{\infty} [\mathbf{x}^{T}(k) \mathbf{Q}_{1} \mathbf{x}(k) + \mathbf{u}^{T}(k) \mathbf{Q}_{2} \mathbf{u}(k)] \alpha^{2k}$$

$$J_{\alpha} = \frac{1}{2} \sum_{k=0}^{\infty} [(\alpha^{k} \mathbf{x})^{T} \mathbf{Q}_{1}(\alpha^{k} \mathbf{x}) + (\alpha^{k} \mathbf{u})^{T} \mathbf{Q}_{2}(\alpha^{k} \mathbf{u})] = \frac{1}{2} \sum_{k=0}^{\infty} [\mathbf{z}^{T} \mathbf{Q}_{1} \mathbf{z} + \mathbf{v}^{T}(k) \mathbf{Q}_{2} \mathbf{v}] \alpha^{2k}$$

$$\mathbf{v}_{1} = \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{3} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{3} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{4} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_$$

The state equation

$$\alpha^{k+1}\mathbf{x}(k+1) = \alpha^{k+1}(\mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k)) \Rightarrow \mathbf{z}(k+1) = \alpha\mathbf{\Phi}(\alpha^{k}\mathbf{x}(k)) + \alpha\mathbf{\Gamma}(\alpha^{k}\mathbf{u}(k))$$
$$\Rightarrow \mathbf{z}(k+1) = \alpha\mathbf{\Phi}\mathbf{z}(k) + \alpha\mathbf{\Gamma}\mathbf{v}(k)$$

- State feedback control (LQR)
 - Find the feedback gain for system ($\alpha \Phi$, $\alpha \Gamma$) $\mathbf{v} = -\mathbf{K}\mathbf{z} \Rightarrow \alpha^k \mathbf{u}(k) = -\mathbf{K}(\alpha^k \mathbf{x}(k)) \Rightarrow \mathbf{u}(k) = -\mathbf{K}\mathbf{x}(k)$
 - Choice of α : $\mathbf{x}(t_s/\Delta T) \approx \mathbf{x}(0)(1/\alpha)^k \le 0.01\mathbf{x}(0) \Rightarrow \alpha > 100^{1/k} = 100^{\Delta T/t_s}$