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Control Law Design

¢ Linear state-space model (SISO)
— Continuous-time version:  § = Fx + Gu
y=Hx+Ju

— Discrete-time version: x(k+1) = ®x(k)+ Tu(k)

v(k)=Hx(k)+ Ju(k)
& Ir= J'::er dnG

eFx-eTFx=eTGu= i“ d(eTx)= [:‘x e Gudr

— where

e T x(t+ AN - Tx(r) = i‘-m ¢ udrG

x(r+ A= x() = f‘ﬁ“e’F""* udtG (p=r1—-1-A1)
+ Design steps h
— If all the states are available, use state feedback. (u=—KXx)
— Ifa part of states are available, design a state estimator.
— The state estimator is also called a state observer.
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Overview
+ States

— What characterize a system.

— The internal state variables are the smallest possible subset of
system variables that can represent the entire state of the
system at any given time.

— State variables must be linearly independent.
» State-space model
x=dx/dt=f(x,u.d)
where x =[x, x, " a=[u, u,].d=[d,.d]
X: states
u: inputs
— d: disturbances
— y:outputs — can be a function of above, y=g(x,d,u)
If higher order derivatives exist, convert them to 15t order

CBE495 Process Control Application Korea University

Calculation of eAt

* Taylor series expansion
D= =1+ Ft+F1?/24FF 31+ =T+Fr¥
where W =1+ Fr/ 2+ Fr2 /34 Fr /41+ -
~T+Ft/2(1+Ft/3(--Ft/(N -1)A+Ft/N))--)

* Calculationof ®andT
P = =1+ FAY

ar = F-‘:Ar-‘c—‘. Fl F";\I-“
[=| dnG~3 ——G=3Y — MG =YAG
[, ¢"dnG 2 T E
» Example (Double integrator)
x:;g (l);x-l(l);u. 71’:[1 0]:( (F*=0)
@ =¥ =1+FAr+F°Ar /2= ——:ll 0‘—,0 l‘ r:,l M‘
[0 1] |0 0] 10 1]
S ‘)Mcifl 0], To t]a"[o] [ar/2]
=+ FA/2 “lo 17 o o) 2 )] A |
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» State feedback control
x(k+1)=®x(k)-TKx(k) = (z1 -® + TK)X(z) =0
— Characteristic equation: |-I-®+IK|=0

* Pole placement example (Double integrator)
— Desired pole location: z=0.8 + j0.25 with At=0.1

|-I-®+TK|= _B (]) ;{; T ;{A; 2 .i[Kl K ][=0
2 +(AK, +APK 1 2-2)z+ APK, 12 - AtK, +1=0
Desired char. eqn: z> —1.6z+0.7 =0
AtK, +APK,/2-2=-16
Z+APK/2-AK, +1=0.7 =K, =10.K, =35
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* How to convert to canonical form
— It is possible when the system is controllable.

— Controllability

« The system (®, T') is controllable if for every nt"-order polynomial
a,(2), there exists a control low u=—Kx such that the characteristic
polynomial of (®-T'K) is «(z).

— The pair (®, T) is controllable if and only if the rank of
C=[I' @I @ ... ®d™I]isn.

* The system (®, I') is controllable if for every x, and x, there is
finite N and a sequence of control ug, uy, ..., uy such that if the
system has state X, at k=0, it is forced to state x, at k=N.

e The system (®, I') is controllable if every mode in @ is connected
to the control input.
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Control Canonical Form

» Characteristic polynomial
- af2)=z"ta, 2"+ ... a4 zta,

« Control Canonical form x(k+1)=® x(k) + T u(k)
[-a -a -a,| ] (k) =H x(k)
1 0 0 0 0
®,=0 1 0 0 [.=[0| H.=[h b b - 5]
0 :
Lo o1 o] [o]

» State-feedback control
x(k+1) = x(k) - T Kx(k) = (@, - T K)x(k)

-a-K, -a,-K, -a,-K,
1 0 0 0
@ -TK= 0 1 0 0 |2 a(x)=z"+(a+K)++(a,+K,)
‘ 0 _ |
Lo - 01 o |
CBE495 Process Control Application Korea University

Controllability Matrix

» Controllability matrix, C=[T" ®I" ®T ... ®\T']

should be invertible for system to be controllable.

x(1) = ®x(0) + Tu(0)
x(2)= ®x(1)+ Tu(l)= ®°x(0) + BT u(0) + Tu(1)

u(N-1)7]

1 u(N-2)

(V)= @ x(0)+ %cp-“":"r.w(j) .
= =[r @ - @T

u(0) |
* Ackermann’s formula

— Satisfactory for SISO systems of order less than 10 and can
handle systems with repeated roots.

K=[0 - 0 1] @r -- q>"":r]’:a,(d>)

— Selecting the desired characteristic polynomial, «(z) should be
based on system evaluations such as step response and etc.
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Estimator Design

« [f the full states are not available, unmeasured
states should be estimated based on the output
measurements to use state feedback strategy.

* Model of plant dynamics
X(k+1) =®x(k)+ Tu(k)
— The model (@, T') and u(k) are known and the estimate of the
initial condition x(0) is assumed to be obtained.
— The error dynamics: £(k+1)=®x(k) (¥=x-%)
— If @ is unstable, the error will not converge to zero.
* Prediction estimator
X(k+1) = ®X(k )+ Tu(k) + L [v(k) - HX(k)]
= X(k+1)=[®-L,H](k)
— By pole placement, the estimator gain, L, can be designed to
have desired error dynamics.
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Observability Matrix

* Observability matrix, O=[H; H®; H®? ...; HON]
should be invertible for system to be observable.
¥(0)=Hx(0) ¥0) ] H
»(1)=Hx(1) = H®x(0) . | |
= (:1) ch 1x(0)
YN -1)=H® 'x(0) -y |HOv

— The controllability and the observability are dual.

¢ Ackermann’s formula

— Satisfactory for SISO systems of order less than 10 and can
handle systems with repeated roots. )
L‘; :[0 0 1}[‘[: oH . (@ )‘:-:-; H:_‘_-(I{(ll’:)

— Selecting the desired characteristic polynomial, «,(z) should be
based on prediction error dynamics.
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* Isit possible to find L, for desirable error
dynamics?
— Itis possible when the system is observable.

— Observability
* The system (®, H) is observable if for every nt-order polynomial
,(2), there exists a estimator gain L, such that the characteristic
equation of state error of the estimator is ¢,(z).
- The pair (®, H) is controllable if and only if the rank of
O=[H H® HP? ... HO" ] is n.

» The system (®, H) is observable if for any x,, there is finite N such
that x, can be computed from observation yg, Vs, ..., Yn1-

e The system (@, H) is observable if every dynamic mode in ®@ is
connected to the outputy via H.
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Current Estimator

* The previous form of state estimation of x(k) does
not involve current measurement.
Alternative estimator formulation

R(k) = ®E(k) + Tu(k) + L [v(k) ~HI (k)]

(k) =®x(k-1)+Tu(k-1)

— Itis impossible to have measurement y(k) and u(k) calculation
at the same time.

— However, the calculation of u(k) can be arranged to minimize
computational delays by performing all calculations before the
sample instant that do not directly depend on y(k)
measurement.

— In this case, the observability matrix and the calculation of
current estimator gain L should be modified accordingly.

CBE495 Process Control Application Korea University 111-12



Reduced-Order Estimators

* The direct measurements of states do not need — Reduced-order estimator gain L, can be selected so that the
to be estimated following characteristics equation have desired roots.

e e g .. o (2)=|Z1-®,, +L D |=0
— If there is significant noise in measurements, full state (@)= * 2|

estimation can provide smoothing for the measured state and - Or, use Ackermann’s formula
estimation of unmeasured states.
— Division of states (a: directly measured)
(k=] [@,. @.][x.®] [1.]
R R KA
k)| |@, @, 5k T,

x, (k)]
why=[1 O]L-(H | Known input

Known measurement \‘\‘ (k+D) =@, x, (k) +{®,x, (k) + T u(k)

[5G+ -@ x, () -T a0 x,(5)
X, (k=1) =@, (k) = ®,.x (k) = Tu(k) =L [x,(k < 1)-® _x_(k) - T u(k) - ® %, (F)]
%, (k) =[®, -L &, 5 &)
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Regulator Design: Combined control law and Estimator Use of Reference Input
¢ The separation principle * So far, the state feedback was focus on driving
— Feedback control based on the estimator the states to zero. (Regulator problem)
u(k) =-Kx(k) A .
x(k+1) = ®x(k) - TKX(k) = ®x(k) - K (x(k) - £(k)) * Howto lpcorporate s_et point _ _
_ Estimator — For agiven se_t point r, find N, that defines the desired value of
%(k+1) = [®— L, H%(k) states ;. (N,r=x,)
- Combination u=-K(x-x)+u, =-Kx-Nr)+Nr
F(A- -1)]_ [o-L,H o i) where u_, =N,r
x(k +1) rK d)—I‘KJ xU;)J k+)=®x(b)+Tu(k)=x_ =®x_+Tu, = (®-Dx_+Tu, =0
— Characteristic equation — Some system output y, =H x will follow the desired reference.
@, (2)e,(2) =|A - @+ TK |1 - @ + L H|=0 v, =Hx_ =HNr=r>HN_=I ,
— The characteristic poles of complete system consists of the d-1 TN 0 N ®-1 r]'To e
combination of the estimator poles and the control poles = - L | = ‘;‘1 = T7e] E/_—_‘, Cr ey
H, 0N | [I]7|N | | H of [1] Ly lameme

— The estimator and the controller can be designed separately.
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Reference input with estimator Integral Control

+ State-command structure * Integral control by state augmentation
— Prediction estimator — Augment the state with x,, the integral error, e=y-r.
u(k) = -K(X(k)-x,)+ N, r = -KX(k)+ Nr x(k +1) = ®x(k)+Tu(k) + T (k)
where N=N_ +KN_ »(k)=Hx(k)
xk+1] [ @ -TK x(A-)} N - r., * X, (k+ 1) =x,(k)+e(k) =x,(k)+ Hx(k)—r(k)
{m—-l)} L,H ®-TK-LH {i(&')_ ri'y ) [o_l o - {x_.-(bl)}[l H][*:(“]{O]u(t){l}m
. x| o @ x| |T 0
— Current estimator
— Control law

u(k) = -KE(k)-x,)+ N r = -Kx(k) + Nr x,(k)
x| [ @ -TK x(k) s . r, ] . uth)=-[K, K| [+KNx(k)
- + | | x(k)

(k<1 |LH® ®-TK-LH®| %(})| |[IN+LHIN|
« Output error command — The integral is replacing the feedforward term, N,. Also, it has
$(k+1) = (®-TK -L (k) +L. (y(k) &) the additional role of eliminating errors due to w.
x(k+1 @ Ok TTx@] [ o] r,]
el S e SINCR AT
%(k+1)| |L,H ®-TK-LH|3(})| -L,] o]
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Disturbance Estimation

¢ Disturbance rejection — All the ideas of state estimation still apply to reconstruct the
— An alternative approach to state augmentation is to estimate state consisting x and Xar prowd.ed th-e system s obser\{able.
the disturbance signal in the estimator and then to use that - However, the control gain matrix K is not obtained using the
estimate in the control law so as to force the error to zero. augmented model.
— This approach yields results that are equivalent to integral — The augmented system will always be uncontrollable since the
control when the disturbance is constant. disturbance is not influenced by control input by no means.
« Disturbance modeling — The estimation of w will be used in a feedforward control

scheme to eliminate its effect on steady-state errors.

— This basic idea works if w is a constant, a sinusoid, or any
combination of functions that can be generated by a linear

— Disturbance other than constant biases can be modeled.
X, (k+1) =®,x,(k)

w(k)=H_x (k) model.
i+ _[@ -TH,[ 00 A[r]“m — The only constraint is that the disturbance state x, be
(k=D [0 @, |x,® observable.
e x(d) ]

vk =[H O]L,-(i’)_\\
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Effect of Delays

* Sensor delay
— System: x(k+1)=®x(k)+Tu(k) [ k=] [® 0 o] x&) ] [T]
v(F) = Hx (k) S| v+ [=[H 0 0|yt |+ 0 |u)
- k=D ] [0 1 oLy |0
- Delayed output: y,,(k+1)=1y(k) 1 i
¥24(R)

— The augmented system matrix will cause problem in
calculating gains for current estimator.

* Actuator delay
k=D [® T[x(%) 0 I, .
P eSS N
x(k)
(k) =[1 Ol[ud(k)}
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