Road Map of the Lecture IX

• Frequency Response

- Definition
- Benefits of frequency analysis
- How to get frequency response
- Bode Plot
- Nyquist Diagram

CHBE320 Process Dynamics and Control

Korea University 9-2

CHBE320 LECTURE IX **FREQUENCY RESPONSES**

Professor Dae Ryook Yang

Fall 2021 Dept. of Chemical and Biological Engineering **Korea University**

CHBE320 Process Dynamics and Control

Korea University 9-1

DEFINITION OF FREQUENCY RESPONSE

- For linear system
 - "The ultimate output response of a process for a sinusoidal input at a frequency will show amplitude change and phase shift at the same frequency depending on the process characteristics."

- Amplitude ratio (AR): attenuation of amplitude, \hat{A}/A
- Phase angle (ϕ): phase shift compared to input
- These two quantities are the function of frequency.

CHBE320 Process Dynamics and Control

Korea University 9-3

BENEFITS OF FREQUENCY RESPONSE

 Frequency responses are the informative representations of dynamic systems

⁹⁻⁴

-1

- In signal processing field, transfer functions are called "filters".

CHBE320 Process Dynamics and Control

Korea University 9-5

- Any linear dynamical system is completely defined by its frequency response.
 - The AR and phase angle define the system completely.
 - Bode diagram
 - AR in log-log plot
 - Phase angle in log-linear plot
 - Via efficient numerical technique (fast Fourier transform, FFT), the output can be calculated for any type of input.
- Frequency response representation of a system dynamics is very convenient for designing a feedback controller and analyzing a closed-loop system.
 - Bode stability
 - Gain margin (GM) and phase margin (PM)

CHBE320 Process Dynamics and Control

Korea University 9-6

Example

- If a feed is pumped by a peristaltic pump to a CSTR, will the fluctuation of the feed flow appear in the output?

If the magnitude of fluctuation of q_i is 5% of nominal flow rate, the fluctuation in the output concentration will be about 0.05% which is almost unnoticeable.

Korea University 9-8

- Critical frequency
 - As frequency changes, the amplitude ratio (AR) and the phase angle (PA) change.
 - The frequency where the PA reaches -180° is called critical frequency (ω_c).
 - The component of output at the critical frequency will have the exactly same phase as the signal goes through the loop due to comparator (-180°) and phase shift of the process (-180°).
 - For the open-loop gain at the critical frequency, $K_{OL}(\omega_c) = 1$
 - No change in magnitude
 - Continuous cycling
 - **For** $K_{OL}(\omega_c) > 1$
 - Getting bigger in magnitude
 - Unstable
 - For $K_{OL}(\omega_c) < 1$
 - Getting smaller in magnitude
 - Stable

CHBE320 Process Dynamics and Control

Korea University 9-7

 $\uparrow \sim \sim \sim \uparrow$

 $\sim \sim \sim$

Sign change

OBTAINING FREQUENCY RESPONSE

• From the transfer function, replace s with jo

$$G_{\downarrow}(s) \xrightarrow{s=j\omega} G(j\omega)$$

Frequency response Transfer function

- For a pole, $s = \alpha + j\omega$, the response mode is $e^{(\alpha+j\omega)t}$.
- If the modes are not unstable ($\alpha \le 0$) and enough time elapses, the survived modes becomes $e^{j\omega t}$. (ultimate response)
- The frequency response, G(jw) is complex as a

Getting ultimate response

- For a sinusoidal forcing function $Y(s) = G(s) \frac{A\omega}{s^2 + \omega^2}$ - Assume G(s) has stable poles b_i . Decayed out at large t $Y(s) = G(s)\frac{A\omega}{s^2 + \omega^2} = \frac{\alpha_1}{s + b_1} + \dots + \frac{\alpha_n}{s + b_n} + \frac{Cs + D\omega}{s^2 + \omega^2}$ $G(j\omega)A\omega = Cj\omega + D\omega \Rightarrow G(j\omega) = \frac{D}{A} + j\frac{C}{A} = R + jI$ $C = IA, D = RA \Rightarrow y_{ul} = A(I\cos\omega t + R\sin\omega t) = \hat{A}\sin(\omega t + \phi)$ $\therefore AR = \hat{A}/A = \sqrt{R^2 + I^2} = |G(j\omega)| \quad \text{and} \quad \phi = \tan^{-1}(I/R) = \measuredangle G(j\omega)$
- Without calculating transient response, the frequency response can be obtained directly from $G(j\omega)$.
- Unstable transfer function does not have a frequency response because a sinusoidal input produces an unstable output response.

CHBE320 Process Dynamics and Control

Korea University 9-10

 $G(s) = \tau_a s + 1$

 $G(j\omega) = 1 + j\omega\tau_a$

 $\phi = \measuredangle G(j\omega) = \tan^{-1}(\omega\tau_a)$

Unstable pole

 $AR = |G(j\omega)| = \frac{1}{\sqrt{1+\omega^2\tau^2}}$

CHBE320 Process Dynamics and Control

0

SKETCHING BODE PLOT

 $G(s) = \frac{G_a(s)G_b(s)G_c(s)\cdots}{G_1(s)G_2(s)G_3(s)\cdots}$

 $G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega)\cdots}{G_1(j\omega)G_2(j\omega)G_3(j\omega)\cdots}$

 $|G(j\omega)| = \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)|\cdots}{|G_1(j\omega)||G_2(j\omega)||G_3(j\omega)|\cdots}$

- · Bode diagram
 - AR vs. frequency in log-log plot
 - PA vs. frequency in semi-log plot
 - Useful for
 - · Analysis of the response characteristics
 - Stability of the closed-loop system only for open-loop stable systems with phase angle curves exhibit a single critical frequency.

Examples

CHBE320 Process Dynamics and Control

Korea University 9-14

- Amplitude Ratio on log-log plot
 - Start from steady-state gain at $\omega = 0$. If G_{OL} includes either integrator or differentiator it starts at ∞ or 0.
 - Each first-order lag (lead) adds to the slope -1 (+1) starting at the corner frequency.
 - Each integrator (differentiator) adds to the slope -1 (+1) starting at zero frequency.
 - A delays does not contribute to the AR plot.
- Phase angle on semi-log plot
 - Start from 0° or -180° at $\omega = 0$ depending on the sign of steadystate gain.
 - Each first-order lag (lead) adds 0° to phase angle at ∞= 0, adds
 -90° (+90°) to phase angle at ∞ = ∞, and adds -45° (+45°) to phase angle at corner frequency.
 - Each integrator (differentiator) adds -90° (+90°) to the phase angle for all frequency.

A delay adds -θω to phase angle depending on the frequency.
 CHBE320 Process Dynamics and Control
 Korea University 9-15

(0.5s + 1)

(20s+1)(4s+1)

CHBE320 Process Dynamics and Control

ω (rad/min

Korea University 9-16

Λ

NYQUIST DIAGRAM

- Alternative representation of frequency response
- Polar plot of G(jw) (w is implicit)

$G(j\omega) = \operatorname{Re}[G(j\omega)] + j \operatorname{Im}[G(j\omega)]$

 Compact (one plot)
 Wider applicability of stability analysis than Bode plot

- Inverse Nyquist diagram: polar plot of $1/G(j\omega)$
- Combination of different transfer function components is not easy as with Nyquist diagram as with Bode plot.

CHBE320 Process Dynamics and Control

Korea University 9-18

Nyquist

diagram

Re

lm 🛉