Road Map of the Lecture II

CHBE320 LECTURE II MEASUREMENT, TRANSMITTERS AND FILTERING

Professor Dae Ryook Yang Fall 2021 Dept. of Chemical and Biological Engineering Korea University

Visit Sensor Block

- Kind of sensors
- Principles of the sensors
- Selection of sensors
- Noise filter

CHBE320 Process Dynamics and Control

Korea University 2-2

CHBE320 Process Dynamics and Control

Korea University 2-1

INTRODUCTION TO SENSOR

- What is Sensor?
 - Sensor converts the physical quantity to signal that can be recognized by other components such as display, transmitter and etc.

Physical Variable		Measurement	
(T, P, F, L, x,)	Sensor	(V, mA, psig,)	

- · Sensor types
 - Temperature: thermocouple, RTD, thermistor
 - Pressure: bellows, bourdon tube, diaphragm
 - Flow rate: orifice, venturi, magnetic, ultrasonic, Coliolis effect
 - Liquid level: float, differential pressure
 - pH: pH electrode
 - Viscosity: pressure drop across venturi or vane deflection
 - Composition: density, conductivity, GC, IR, NIR, UV

CHBE320 Process Dynamics and Control

Korea University 2-3

MEASUREMENT DEVICE

- Transducer: Sensor+Transmitter
 - Transmitter generates an industrial standard signal from the sensor output.
 - Standard instrumentation signal levels
 - Voltage: 1~5VDC, 0~5VDC, -10~+10VDC, etc.
 - Current: 4~20mA (long range transmission with driver)
 - Pneumatic: 3-15psig

- Signal conversion

- I/P or P/I transducer: current-to-pressure or vice versa
- I/V (I/E) or V/I: current-to-voltage or vice versa
- P/E or E/P: pressure-to-voltage or vice versa
- Analog-to-Digital (A/D) converter
 - Continuous signal converted to digital signal after sampling
 - Specification: sample rate, resolution (8bit, 12bit, 16bit)

CHBE320 Process Dynamics and Control

Korea University 2-4

-1

TRANSMITTERS

- Transmitter Gain (K_m): adjustable
 - Amplification ratio: (output span)/(input span)
- Span and Zero: adjustable
 - Span: magnitude of range of transmitter signal

CHBE320 Process Dynamics and Control Korea University 2-5

TEMPERATURE SENSORS

Principle	Туре	Usable range (°C)	Remarks	
Thermal Expansion	Gas expansion Liquid Bimetal	-230~600 -200~350 -50~500	N2 Oil	
Resistance	Pt-100 Thermistor	-200~500 <300	Accurate, linear, self heating Cheap, inaccurate, nonlinear	
EMF	Thermocouple	-200~1600	Low sensitivity	
	IC temp. sensor	-100~150	High voltage, accurate, linear	
Radiation	Pyrometer	Very wide	Noncontacting, need accurate calibration	

CHBE320 Process Dynamics and Control

Korea University 2-6

	Temperature Sen	sor Attributes		
Criteria	Thermocouple	RTD	Thermistor	
Cost-OEM Quality	Low	High	Low	
Temperature Range	Very wide -450°F +4200°F	Wide -400°F +1200°F	Shot to medium -100°F +500°F	
Interchangeability	Good	Excellent	Poor to fair	
Long-term Stability	Poor to fair	Good	Poor	
Accuracy	Medium	High	Medium	
Repeatability	Poor to fair	Excellent	Fair to good	
Sensitivity (output)	Low	Medium	Very high	
Response	Medium to fast	Medium	Medium to fast	
Linearity	Fair	Good	Poor	
Self Heating	No	Very low to low	High	
Point (end) Sensitive	Excellent	Fair	Good	
Lead Effect	High	Medium	Low	
Size/Packaging	Small to large	Medium to small	Small to medium	

CHBE320 Process Dynamics and Control

Korea University 2-7

	Temperature Sensor Advantag	es/Disadvantages		
Sensor	Advantages	Disadvantages		
Thermocouple	•Self-powered	•Non-linear		
	•Simple	 Low voltage 		
	•Rugged	 Reference required 		
	 Inexpensive 	Least stable		
	•Wide variety	 Least sensitive 		
	•Wide range			
RTD	 Most stable and accurate 	•Expensive		
	 Area sensing 	 Current source required 		
	 More linear than thermocouple 	•Slow response time		
	•Most repeatable	 Low sensitivity to small T change 		
	 Contamination resistant 	•Self heating		
Thermistor	•High output	•Non-linear		
	•Fast	 Limited range 		
	•Economic	•Fragile		
	 Two-wire ohms measurement 	 Current source required 		
		•Self heating		
Infrared	No contact required	•High initial cost		
	 Very fast response time 	 More complex/support electronics 		
	 Good stability over time 	 Spot size restricts application 		
	 High repeatability 	•Emissivity variations affect readings		
	•No oxidation/corrosion to affect	•Accuracy affected by dust, smoke and		
	sensor	background radiation		

CHBE320 Process Dynamics and Control

Korea University 2-8

THERMOCOUPLE

- Thermocouple Types
 - Chromel- alumel (K- type): most popularly used
 - Iron- constantan (J- type): higher electromotive force
 - (emf)
 - Chromel- constantan (E- Type): cryogenic temperature
 - 13% Rh. Pt Pt (R- type): high temperature (> 900°C)
- Typical emf is about 0.041mV/°C for K type - Needs signal amplification
- · Ice point can be a ice bath or an electronic device to compensate the ambient temperature.
 - -11.0
- CHBE320 Process Dynamics and Control

Korea University 2-9

ice bath

region

■ copper ■ metal 1

metal 2

Thermocouple type	Overall Range (°C)	EMF	
		(mV/ °C)	
B (Platinum / Rhodium)	100~1800	0.01	
E (Chromel / Constantan)	-270~790	0.068	
J (Iron / Constantan)	-210~1050	0.054	
K (Chromel / Alumel)	-270~1370	0.041	
N (Nicrosil / Nisil)	-260~1300	0.038	
R (Platinum / Rhodium)	-50~1760	0.01	
S (Platinum / Rhodium)	-50~1760	0.01	
T (Copper / Constantan)	-270~400	0.054	

- · B,R,S: high temp. low sensitivity, high cost
- S: very stable, use as the standard of calibration for the melting point of gold • (1064.43°C).
- N: improved type K, getting more popular
- T: cryogenic use

CHBE320 Process Dynamics and Control

 Ref: http://www.watlow.com/reference/refdata/TOP http://www.picotech.com/applications/thermocouple.html

Korea University 2-10

RESISTANCE TEMPERATURE DETECTOR (RTD)

- Resistance changes as temperature changes. ٠
- Platinum (Pt100 Ω) is widely used. Copper (Cu) and tungsten (W) are used sometimes. (ASME 0.385 Ω /°C, JIS 0.392 Ω /°C) •
- Distance between sensor and converter should be . considered.
 - Connecting wire has resistance and should be compensated.

CHBE320 Process Dynamics and Control

٠

Korea University 2-12

CHBE320 Process Dynamics and Control

Korea University 2-11

FLOW MEASUREMENT (1)

Differential Pressure Cell

- ΔP : Delta P across the orifice
- A1: area of flow pipe
- A₂: area of orifice
- C_d: orifice coefficient
- Maximum pressure drop should be < 4% of the total line pressure
- Selection of orifice size and delta P range is very important for the reading precision

CHBE320 Process Dynamics and Control

Korea University 2-13

FLOW MEASUREMENT(2)

Vortex Flow Meter

- The vortices create low and high pressure zones behind the bluff body.
- The vortex meter uses a piezoelectric crystal sensor to detect the pressure exerted by the vortices on the sensing wing.
- The piezoelectric crystal converts this vortex shedding frequency into electrical signals.
- Electromagnetic Flow Meter
 - Electrically conducting fluid passing through a magnetic field created by the device.

CHBE320 Process Dynamics and Control

Korea University 2-14

CORIOLIS FLOWMETER (3)

- Flow rate is measured by Coriolis effect (1835)
- Mass flowrate, vol. flowrate, temp. and density are simultaneously measured.

FLOW MEASUREMENT (4)

- Ultrasonic Flow Meter
 - High accuracy
 - No contact with flow

- Positive Displacement Flow Meter
 - Turbine, gear, wheels
- Thermal Dispersion Flow Meter
 - Flow over heating coil will change temperature

CHBE320 Process Dynamics and Control

Λ

SELECTION OF FLOWMETERS

Requirement	Orifice	Positive displace ment	Vortex	Electro- Magnetic	Acoustic	Coriolis
accuracy	±2~4% of full span	±0.2~0.5 % of rate	±1.0% of rate	±0.5% of rate	±1~5% of full span	±0.5% of rate
Press. loss	medium	high	medium	none	none	low
Initial Cost	low	medium	high	high	high	very high
Maintenance cost	high	medium	medium	low	low	low
Application	Clean,dirty liq.; some slurry	Clean viscous liq.	Clean,dirty liq.;	Clean,dirty viscous conductive liq. and slurry	Dirty, viscous liq. and slurry	Clean,dirty viscous liq. and some slurry
Upstream pipe size	10~30	None	10 to 20	5	5 to 30	none
Viscosity effect	high	high	medium	none	none	none
Rangeability	4 to 1	10 to 1	10 to 1	40 to 1	20 to 1	10 to 1

CHBE320 Process Dynamics and Control

Korea University 2-17

LEVEL MEASUREMENT

WEIGHT MEASUREMENT

- Strain Gauge Load Cell
 - Replacement of mechanical balance when electrical signals is required (force is converted to electrical signal)
 - Usually 4 strain gauges are mounted on a structure such as beam
 - Two for measuring tension and two for compression (change in
 - resistance)
 Wheatstone bridge
 - Types
 - Bending beam
 - Ring (Pancake)
 - Shear beam, etc.
 - Advantages/Disadvantages
 - High accuracy (0.03%~0.1%)
 - Produced in various forms and shapes
 - Accuracy degradation when the load is moving

Korea University 2-19

OTHER MEASUREMENTS

- Composition measurements
 - Expensive
 - Long time delay
 - High maintenance cost
 - Gas Chromatography
 - IR, NIR, Raman, UV spectrophotometer
 - pH sensor electrode: concentration of [H+]
 - Dissolved oxygen, conductivity, etc.
- Secondary Measurements
 - Density or temp. for binary composition
- Soft Sensors
 - Estimated by a model based on other measurements

CHBE320 Process Dynamics and Control

Korea University 2-20

MEASUREMENT USING NIR

- Near InfraRed (NIR) Light
 - Depending on the wave length of light
 - Near IR: 0.7-2.5μm
 - Mid IR: 2.5-10µm
 - Far IR: 10-1000µm

- Different molecular bonds absorb different wave length of light and it is converted to the vibration of the molecules.
 - O-H bond in water
 - · C-H bond in organic substance or fat
 - N-H bond in protein

CHBE320 Process Dynamics and Control

Korea University 2-21

NIR Sensor

- Using filter wheel in front of light source, different wave length of the light is emitted as pulse.
- The concentration is obtained by analyzing the spectrum of reflected light.

CHBE320 Process Dynamics and Control

Korea University 2-22

FILTERING

- Noise Source
 - Process nature (turbulence, vibration, oscillation...)
 - Various noise source from environment
 - Power line, electromagnetic force, etc.
- Removing noise

Filter time constant Filtered output

First-order filter analogy

$$\tau_F \frac{y_F - y_F^0}{\Delta t} + y_F = y$$
Previous filtered output

$$y_F = \alpha y_F^0 + (1 - \alpha)y$$
 where $\alpha = \frac{\tau_F/\Delta t}{1 + \tau_F/\Delta t} (0 < \alpha < 1)$

CHBE320 Process Dynamics and Control

Korea University 2-24

 \sim

Measurement of properties using NIR

- Composition or contents
 - Moisture
 - Fat
 - Protein
 - Sugar
 - Nicotine
 - Caffeine
 - Etc.
- Physical dimensions
 - Coating weight)
 - Film thickness
 - Etc.

Korea University 2-23

namics and Control

- The filter behaves as an interpolation between the measured output and previous filtered output.
- If $\alpha = 1$, the measured output is ignored. (constant)
- If $\alpha = 0$, the filtered output is same as the measured output (no filtering)
- If $\tau_F = 0$, $\alpha = 0$ and no filtering is achieved.
- If $\tau_F = \infty$, $\alpha = 1$ and the measured output is ignored.
 - \Rightarrow As τ_F increases, heavier filter is applied.

CHBE320 Process Dynamics and Control

Korea University 2-25