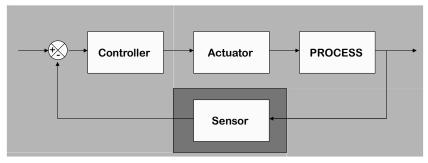
# CHBE320 LECTURE II **MEASUREMENT, TRANSMITTERS** AND FILTERING


# **Professor Dae Ryook Yang** Fall 2021 Dept. of Chemical and Biological Engineering **Korea University**

**CHBE320 Process Dynamics and Control** 

Korea University 2-1

# Road Map of the Lecture II

### Visit Sensor Block



- Kind of sensors
- Principles of the sensors
- **Selection of sensors**
- Noise filter

CHBE320 Process Dynamics and Control

### INTRODUCTION TO SENSOR

#### What is Sensor?

Sensor converts the physical quantity to signal that can be recognized by other components such as display, transmitter and etc.



#### Sensor types

- Temperature: thermocouple, RTD, thermistor
- Pressure: bellows, bourdon tube, diaphragm
- Flow rate: orifice, venturi, magnetic, ultrasonic, Coliolis effect
- Liquid level: float, differential pressure
- pH: pH electrode
- Viscosity: pressure drop across venturi or vane deflection
- Composition: density, conductivity, GC, IR, NIR, UV

**CHBE320 Process Dynamics and Control** 

Korea University 2-3

### MEASUREMENT DEVICE

### **Transducer: Sensor+Transmitter**

- Transmitter generates an industrial standard signal from the sensor output.
- Standard instrumentation signal levels
  - Voltage: 1~5VDC, 0~5VDC, -10~+10VDC, etc.
  - Current: 4~20mA (long range transmission with driver)
  - Pneumatic: 3-15psig
- Signal conversion
  - I/P or P/I transducer: current-to-pressure or vice versa
  - I/V (I/E) or V/I: current-to-voltage or vice versa
  - P/E or E/P: pressure-to-voltage or vice versa

### Analog-to-Digital (A/D) converter

- Continuous signal converted to digital signal after sampling
- Specification: sample rate, resolution (8bit, 12bit, 16bit)

**CHBE320 Process Dynamics and Control** 

## **TRANSMITTERS**

- Transmitter Gain (K<sub>m</sub>): adjustable
  - Amplification ratio: (output span)/(input span)
- · Span and Zero: adjustable
  - Span: magnitude of range of transmitter signal
  - Zero: lower limit of transmitter signal

Actual Ex) Temp. Transmitter Ideal  $K_m = \frac{(20mA - 4mA)}{(150^{\circ}C - 50^{\circ}C)} = 0.16 \ [mA/^{\circ}C]$ span span=100'C zero=50°C 50 150 T(°C)

· Other functions: square-root extractor,

**CHBE320 Process Dynamics and Control** 

Korea University

### **TEMPERATURE SENSORS**

| Principle            | Туре                               | Usable range (°C)               | Remarks                                                        |
|----------------------|------------------------------------|---------------------------------|----------------------------------------------------------------|
| Thermal<br>Expansion | Gas expansion<br>Liquid<br>Bimetal | -230~600<br>-200~350<br>-50~500 | N2<br>Oil                                                      |
| Resistance           | Pt-100<br>Thermistor               | -200~500<br><300                | Accurate, linear, self heating<br>Cheap, inaccurate, nonlinear |
| EMF                  | Thermocouple                       | -200~1600                       | Low sensitivity                                                |
|                      | IC temp. sensor                    | -100~150                        | High voltage, accurate, linear                                 |
| Radiation            | Pyrometer                          | Very wide                       | Noncontacting, need accurate calibration                       |

**CHBE320 Process Dynamics and Control** 

| Temperature Sensor Attributes |                                                    |                 |                                    |  |
|-------------------------------|----------------------------------------------------|-----------------|------------------------------------|--|
| Criteria                      | Thermocouple                                       | RTD             | Thermistor                         |  |
| Cost-OEM Quality              | Low                                                | High            | Low                                |  |
| Temperature Range             | Very wide Wide<br>-450°F -400°F<br>+4200°F +1200°F |                 | Shot to medium<br>-100°F<br>+500°F |  |
| Interchangeability            | Good                                               | Excellent       | Poor to fair                       |  |
| Long-term Stability           | Poor to fair                                       | Good            | Poor                               |  |
| Accuracy                      | Medium                                             | High            | Medium                             |  |
| Repeatability                 | Poor to fair                                       | Excellent       | Fair to good                       |  |
| Sensitivity (output)          | Low                                                | Medium          | Very high                          |  |
| Response                      | Medium to fast                                     | Medium          | Medium to fast                     |  |
| Linearity                     | Fair                                               | Good            | Poor                               |  |
| Self Heating                  | No                                                 | Very low to low | High                               |  |
| Point (end) Sensitive         | Excellent                                          | Fair            | Good                               |  |
| Lead Effect                   | High                                               | Medium          | Low                                |  |
| Size/Packaging                | Small to large                                     | Medium to small | Small to medium                    |  |

CHBE320 Process Dynamics and Control

Korea University 2-7

|              | Temperature Sensor Advantag                                                                                                      | jes/Disadvantages                                                                                                                                                                                       |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sensor       | Advantages                                                                                                                       | Disadvantages                                                                                                                                                                                           |  |  |
| Thermocouple | Self-powered Simple Rugged Inexpensive Wide variety Wide range                                                                   | Non-linear     Low voltage     Reference required     Least stable     Least sensitive                                                                                                                  |  |  |
| RTD          | *Most stable and accurate     *Area sensing     *More linear than thermocouple     *Most repeatable     *Contamination resistant | Expensive     Current source required     Slow response time     Low sensitivity to small T change     Self heating                                                                                     |  |  |
| Thermistor   | *High output *Fast *Economic *Two-wire ohms measurement                                                                          | Non-linear     Limited range     Fragile     Current source required     Self heating                                                                                                                   |  |  |
| Infrared     | No contact required Very fast response time Good stability over time High repeatability No oxidation/corrosion to affect sensor  | *High initial cost     *More complex/support electronics     *Spot size restricts application     *Emissivity variations affect readings     *Accuracy affected by dust, smoke and background radiation |  |  |

CHBE320 Process Dynamics and Control

### **THERMOCOUPLE**

- Thermocouple Types
  - Chromel- alumel (K- type): most popularly used
  - Iron- constantan (J- type): higher electromotive force (emf)
  - Chromel- constantan (E- Type): cryogenic temperature
  - 13% Rh. Pt Pt (R-type): high temperature (> 900°C)

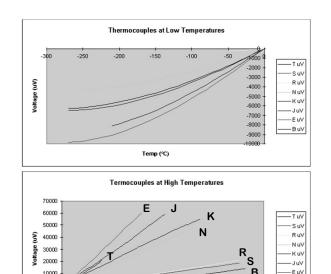


- Typical emf is about 0.041mV/°C for K type
  - Needs signal amplification
- Ice point can be a ice bath or an electronic device to compensate the ambient temperature.



-11.0-11

**CHBE320 Process Dynamics and Control** 


Korea University

2-9

| Thermocouple type        | Overall Range (°C)   | EMF      |
|--------------------------|----------------------|----------|
| ssapie type              | Sister starting ( G) | (mV/ °C) |
| B (Platinum / Rhodium)   | 100~1800             | 0.01     |
| E (Chromel / Constantan) | -270~790             | 0.068    |
| J (Iron / Constantan)    | -210~1050            | 0.054    |
| K (Chromel / Alumel)     | -270~1370            | 0.041    |
| N (Nicrosil / Nisil)     | -260~1300            | 0.038    |
| R (Platinum / Rhodium)   | -50~1760             | 0.01     |
| S (Platinum / Rhodium)   | -50~1760             | 0.01     |
| T (Copper / Constantan)  | -270~400             | 0.054    |

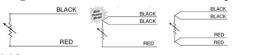
- B,R,S: high temp. low sensitivity, high cost
- S: very stable, use as the standard of calibration for the melting point of gold (1064.43°C).
- N: improved type K, getting more popular
- T: cryogenic use
- Ref: <a href="http://www.watlow.com/reference/refdata/TOP">http://www.watlow.com/reference/refdata/TOP</a>
  <a href="http://www.picotech.com/applications/thermocouple.html">http://www.picotech.com/applications/thermocouple.html</a>

CHBE320 Process Dynamics and Control



Temp (°C)

**CHBE320 Process Dynamics and Control** 


-10000

Korea University 2-11

-BuV

### RESISTANCE TEMPERATURE DETECTOR (RTD)

- · Resistance changes as temperature changes.
- Platinum (Pt100Ω) is widely used. Copper (Cu) and tungsten (W) are used sometimes. (ASME 0.385Ω/°C, JIS 0.392Ω/°C)
- Distance between sensor and converter should be considered.
  - Connecting wire has resistance and should be compensated.





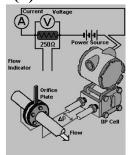
- Rugged
- High accuracy (about ~0.2°C)
- Good repeatability

### Disadvantages

- Requires a converter from resistance to electrical signal
- Higher price than thermocouple
- Large tip limits the usage in narrow spots



ical RTD Design


CHBE320 Process Dynamics and Control

# FLOW MEASUREMENT (1)

## **Differential Pressure Cell**

$$Q = \frac{C_d A_2}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2g_c \Delta P}{\rho}}$$

- △P: Delta P across the orifice
- $A_1$ : area of flow pipe
- A2: area of orifice
- C<sub>d</sub>: orifice coefficient
- Maximum pressure drop should be < 4% of the</li> total line pressure
- Selection of orifice size and delta P range is very important for the reading precision





**CHBE320 Process Dynamics and Control** 

Korea University 2-13

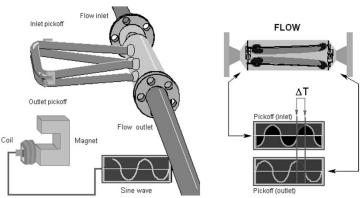
# **FLOW MEASUREMENT(2)**

### **Vortex Flow Meter**

- The vortices create low and high pressure zones behind the bluff body.
- The vortex meter uses a piezoelectric crystal sensor to detect the pressure exerted by the vortices on the sensing wing.
- The piezoelectric crystal converts this vortex shedding frequency into electrical signals.

# **Electromagnetic Flow Meter**

- Electrically conducting fluid passing through a magnetic field created by the device.


Korea University 2-14

**CHBE320 Process Dynamics and Control** 

# **CORIOLIS FLOWMETER (3)**

- Flow rate is measured by Coriolis effect (1835)
- Mass flowrate, vol. flowrate, temp. and density are simultaneously measured.





http://www.emersonprocess.com/micromotion/tutor/default.html

**CHBE320 Process Dynamics and Control** 

Korea University 2-15

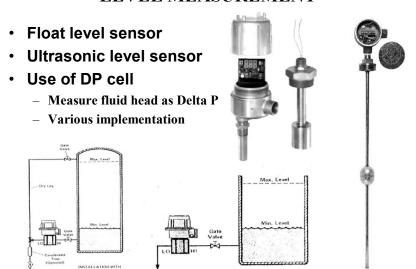
# FLOW MEASUREMENT (4)

- Ultrasonic Flow Meter
  - High accuracy
  - No contact with flow



- Positive Displacement Flow Meter
  - Turbine, gear, wheels
- Thermal Dispersion Flow Meter
  - Flow over heating coil will change temperature

CHBE320 Process Dynamics and Control


# **SELECTION OF FLOWMETERS**

| Requirement        | Orifice                             | Positive displace ment   | Vortex               | Electro-<br>Magnetic                                       | Acoustic                             | Coriolis                                          |
|--------------------|-------------------------------------|--------------------------|----------------------|------------------------------------------------------------|--------------------------------------|---------------------------------------------------|
| accuracy           | ±2~4%<br>of full span               | ±0.2~0.5<br>% of rate    | ±1.0%<br>of rate     | ±0.5%<br>of rate                                           | ±1~5%<br>of full span                | ±0.5%<br>of rate                                  |
| Press. loss        | medium                              | high                     | medium               | none                                                       | none                                 | low                                               |
| Initial Cost       | low                                 | medium                   | high                 | high                                                       | high                                 | very high                                         |
| Maintenance cost   | high                                | medium                   | medium               | low                                                        | low                                  | low                                               |
| Application        | Clean,dirty<br>liq.; some<br>slurry | Clean<br>viscous<br>liq. | Clean,dirty<br>liq.; | Clean,dirty<br>viscous<br>conductive<br>liq. and<br>slurry | Dirty,<br>viscous liq.<br>and slurry | Clean,dirty<br>viscous liq.<br>and some<br>slurry |
| Upstream pipe size | 10~30                               | None                     | 10 to 20             | 5                                                          | 5 to 30                              | none                                              |
| Viscosity effect   | high                                | high                     | medium               | none                                                       | none                                 | none                                              |
| Rangeability       | 4 to 1                              | 10 to 1                  | 10 to 1              | 40 to 1                                                    | 20 to 1                              | 10 to 1                                           |

**CHBE320 Process Dynamics and Control** 

Korea University 2-17

# LEVEL MEASUREMENT



CHBE320 Process Dynamics and Control

Korea University 2-18

### WEIGHT MEASUREMENT

### Strain Gauge Load Cell

- Replacement of mechanical balance when electrical signals is required (force is converted to electrical signal)
- Usually 4 strain gauges are mounted on a structure such as beam

Two for measuring tension and two for compression (change in resistance)

- · Wheatstone bridge
- Types
  - Bending beam
  - Ring (Pancake)
  - · Shear beam, etc.

### - Advantages/Disadvantages

- High accuracy (0.03%~0.1%)
- · Produced in various forms and shapes
- · Accuracy degradation when the load is moving

Korea University

**CHBE320 Process Dynamics and Control** 

### **OTHER MEASUREMENTS**

### Composition measurements

- Expensive
- · Long time delay
- · High maintenance cost
- Gas Chromatography
- IR, NIR, Raman, UV spectrophotometer
- pH sensor electrode: concentration of [H+]
- Dissolved oxygen, conductivity, etc.

### Secondary Measurements

- Density or temp. for binary composition

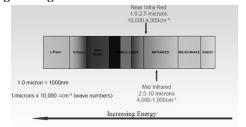
#### Soft Sensors

- Estimated by a model based on other measurements








CHBE320 Process Dynamics and Control

## **MEASUREMENT USING NIR**

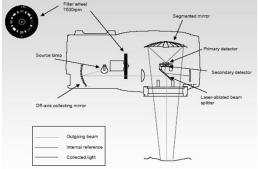
### · Near InfraRed (NIR) Light

- Depending on the wave length of light

• Near IR: 0.7-2.5μm • Mid IR: 2.5-10μm • Far IR: 10-1000μm



- Different molecular bonds absorb different wave length of light and it is converted to the vibration of the molecules.
  - O-H bond in water
  - · C-H bond in organic substance or fat
  - N-H bond in protein


**CHBE320 Process Dynamics and Control** 

Korea University 2-21

### NIR Sensor

- Using filter wheel in front of light source, different wave length of the light is emitted as pulse.
- The concentration is obtained by analyzing the spectrum of reflected light.





**CHBE320 Process Dynamics and Control** 

Korea University 2-22

### · Measurement of properties using NIR

- Composition or contents
  - Moisture
  - Fat
  - Protein
  - Sugar
  - Nicotine
  - Caffeine
  - Etc.
- Physical dimensions
  - Coating weight)
  - Film thickness
  - · Etc.

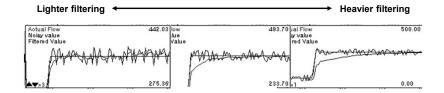




**CHBE320 Process Dynamics and Control** 

Korea University 2-23

### **FILTERING**


- Noise Source
  - Process nature (turbulence, vibration, oscillation...)
  - Various noise source from environment
  - Power line, electromagnetic force, etc.
- Removing noise
- $\tau_F \frac{dy_F}{dt} + y_F = y \quad \longleftarrow \quad \text{Measured output}$  Analog filter Filter time constant Filtered output

- First-order filter analogy

rst-order filter analogy 
$$\tau_F \frac{y_F - y_F^0}{\Delta t} + y_F = y$$
 Previous filtered output 
$$y_F = \alpha y_F^0 + (1 - \alpha) y \text{ where } \alpha = \frac{\tau_F/\Delta t}{1 + \tau_F/\Delta t} (0 < \alpha < 1)$$

CHBE320 Process Dynamics and Control

- The filter behaves as an interpolation between the measured output and previous filtered output.
- If  $\alpha=1$ , the measured output is ignored. (constant)
- If  $\alpha = 0$ , the filtered output is same as the measured output (no filtering)
- If  $\tau_F = 0$ ,  $\alpha = 0$  and no filtering is achieved.
- − If  $\tau_F = \infty$ ,  $\alpha = 1$  and the measured output is ignored.
  - $\Rightarrow$  As  $\tau_F$  increases, heavier filter is applied.



**CHBE320 Process Dynamics and Control**