CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING

Professor Dae Ryook Yang

Fall 2021 Dept. of Chemical and Biological Engineering Korea University

CHBE320 Process Dynamics and Control

Korea University 11-1

Road Map of the Lecture XI

Controller Design and PID Tuning

- Performance criteria
- Trial and error method
- Continuous cycling method
- Relay feedback method
- Tuning relationships
- Direct Synthesis
- Internal Model Control (IMC)
- Effects of modeling error

CHBE320 Process Dynamics and Control

Korea University 11-2

CONTROLLER DESIGN

- Performance criteria for closed-loop systems
 - Stable
 - Minimal effect of disturbance
 - Rapid, smooth response to set point change
 - No offset
 - No excessive control action
 - Robust to plant-model mismatch

$$\min_{K_c,\tau_l,\tau_D}\int_0^\infty (w_1e^2(\tau)+w_2\Delta u^2(\tau))d\tau$$

- Trade-offs in control problems
 - Set point tracking vs. disturbance rejection
 - Robustness vs. performance

CHBE320 Process Dynamics and Control

Korea University 11-3

GUIDELINES FOR COMMON CONTROL LOOPS

- · Flow and liquid pressure control
 - Fast response with no time delay
 - Usually with small high-frequency noise
 - PI controller with intermediate controller gain
 - $0.5 \le K_c \le 0.7$ and $0.2 \le \tau_I \le 0.3$ min (Fruehauf et al. (1994))
- Liquid level control
 - Noisy due to splashing and turbulence
 - High gain PI controller for integrating process
 - Increase in K_c may decrease oscillation (special behavior)
 - Conservative setting for averaging control when it is used for damping the fluctuation of the inlet stream (usually P-control)
 - PI control:

 $K_c = 100\%/\Delta h, \qquad \tau_I = 4V/(K_c Q_{max}) \qquad (\Delta h \equiv \min(h_{max} - h_{sp}, h_{sp} - h_{min}))$

• Error-squared controller with careful tuning

- If heat transfer is involved, it becomes much more complicated. CHBE320 Process Dynamics and Control Korea University 11-4

Gas pressure control

- Usually fast and self regulating
- PI controller with small integral action (large reset time)
- D mode is not usually needed.
- Temperature control
 - Wide variety of the process nature
 - Usually slow response with time delay
 - Use PID controller to speed up the response
- Composition control
 - Similar to temperature control usually with larger noise and more time delay
 - Effectiveness of derivative action is limited
 - Temperature and composition controls are the prime candidates for advance control strategies due to its importance and difficulty of control

CHBE320 Process Dynamics and Control

Korea University 11-5

TRIAL AND ERROR TUNING

- Step1: With P-only controller
 - Start with low K_c value and increase it until the response has a sustained oscillation (continuous cycling) for a small set point or load change. (K_{cu})
 - Set $K_c = 0.5 K_{cu}$.
- Step2: Add I mode
 - Decrease the reset time until sustained oscillation occurs. (τ_{Iu})
 - Set $\tau_I = 3\tau_{Iu}$.
 - If a further improvement is required, proceed to Step 3.
- Step3: Add D mode
 - Increase the preact time until sustained oscillation occurs. (τ_{Du})
 - Set $\tau_D = \tau_{Du}/3$.
- (The sustained oscillation should not be cause by the controller saturation)

CHBE320 Process Dynamics and Control

Korea University 11-6

CONTINUOUS CYCLING METHOD

- Also called as loop tuning or ultimate gain method
 - Increase controller gain until sustained oscillation
 - Find ultimate gain (K_{CU}) and ultimate period (P_{CU})

Ziegler-Nichols controller setting

¼ decay ratio (too much oscillatory)

Controller	K _C	τι	τ_D
Р	0.5K _{CU}	-	-
PI	0.45K _{CU}	$P_{CU}/1.2$	-
PID	0.6K _{CU}	P _{CU} /2	P _{CU} /8

- Modified Ziegler-Nichols setting

Controller	K_C	τ_I	τ_D
Original	$0.6K_{CU}$	$P_{CU}/2$	$P_{CU}/8$
Some overshoot	0.33K _{CU}	$P_{CU}/2$	P _{CU} /3
No overshoot	0.2K _{CU}	P _{CU} /2	P _{CU} /3

CHBE320 Process Dynamics and Control

Korea University 11-7

• Examples

C (2)	_	$4e^{-3.5s}$	
$u_p(s)$	=	7s + 1	

 $G_p(s) = \frac{2e^{-s}}{(10s+1)(5s+1)} \qquad \begin{array}{l} K_{CU} = 7.88\\ P_{CU} = 11.6 \end{array}$

Controller	K_C	τ_I	τ_D
Original	0.57	6.0	1.5
Some overshoot	0.31	6.0	4.0
No overshoot	0.19	6.0	4.0

 $K_{CU} = 0.95$

 $P_{CU} = 12$

Controller	K_C	ι_I	ι_D
Original	4.73	5.8	1.45
Some overshoot	2.60	5.8	3.87
No overshoot	1.58	5.8	3.87

CHBE320 Process Dynamics and Control

Advantages of continuous cycling method

- No a priori information on process required
- Applicable to all stable processes

Disadvantages of continuous cycling method

- Time consuming
- Loss of product quality and productivity during the tests
- Continuous cycling may cause the violation of process limitation and safety hazards
- Not applicable to open-loop unstable process
- First-order and second-order process without time delay will not oscillate even with very large controller gain
- => Motivates Relay feedback method. (Astrom and Wittenmark)

CHBE320 Process Dynamics and Control

Korea University 11-9

RELAY FEEDBACK METHOD

- Relay feedback controller
 - Forces the system to oscillate by a relay controller
 - Require a single closed-loop experiment to find the ultimate frequency information
 - No a priori information on process is required
 - Switch relay feedback controller for tuning
 - Find P_{CU} and calculate K_{CU}

- User specified parameter: d Decide d in order not to perturb the system too much.

- Use Ziegler-Nichols Tuning rules for PID tuning parameters

CHBE320 Process Dynamics and Control

Korea University 11-10

- Calculation of model parameters from K_{CU} and P_U
 - Integrator-plus-time-delay model: $G(s) = \frac{Ke^{-\theta}}{s}$

$$K = \frac{2\pi}{K_{CU}P_U} \quad \theta = P_U/4$$

- First-order-plus-time-delay model: $G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$

$$K = \frac{2\pi}{K_{CU}P_U}$$

$$\tau = \frac{P_U}{2\pi} \tan \frac{\pi(P_U - 2\theta)}{P_U} \quad \text{or} \quad \tau = \frac{P_U}{2\pi} \sqrt{(KK_{CU})^2 - 1}$$

• The θ is decided by visual inspection and K can be calculated using two equations of τ above. CHBE320 Process Dynamics and Control

Korea University 11-11

DESIGN RELATIONS FOR PID CONTROLLERS

Cohen-Coon controller design relations

- Empirical relation for 1/4 decay ratio for FOPDT model

Table 12.2	Cohen and Coon Controller Design Relations		
Controller	Settings	Cohen-Coon	
Р	Kc	$\frac{1}{K}\frac{\tau}{\theta}\left[1 + \theta/3\tau\right]$	
PI	K _c	$\frac{1}{K}\frac{\tau}{\theta}\left[0.9 + \theta/12\tau\right]$	
	τ,	$\frac{\theta[30 + 3(\theta/\tau)]}{9 + 20(\theta/\tau)}$	
PID	Kc	$\frac{1}{K}\frac{\tau}{\theta}\left[\frac{16\tau+3\theta}{12\tau}\right]$	
	τ,	$\frac{\theta[32 + 6(\theta/\tau)]}{13 + 8(\theta/\tau)}$	
	τ _D	$\frac{4\theta}{11 + 2(\theta/\tau)}$	

CHBE320 Process Dynamics and Control

- Design relations based on integral error criteria
 - ¹/₄ decay ratio is too oscillatory
 - Decay ratio concerns only two peak points of the response

- IAE: Integral of the Absolute Error IAE = $\int_0^{\infty} |e(t)| dt$ - ISE: Integral of the Square Error ISE = $\int_0^{\infty} [e(t)]^2 dt$ • Large error contributes more

- Small error contributes less
- Small error contributes less
- Large penalty for large overshoot
- Small penalty for small persisting oscillation
- ITAE: Integral of the Time-weighted Absolute Error

 $\text{ITAE} = \int_{0}^{1} t |e(t)| dt$

· Large penalty for persisting oscillation

Small penalty for initial transient response
CHBE320 Process Dynamics and Control

$$\begin{split} & KK_c = (0.859)(1/2)^{-0.977} = 1.69 \\ & \Rightarrow K_c = 0.169 \end{split}$$

 $\tau/\tau_I = (0.674)(1/2)^{-0.680} = 1.08$ $\Rightarrow \tau_I = 1.85$

(b) Set-point chang

Korea University 11-13

CHBE320 Process Dynamics and Control

 Controller design relation based on ITAE for FOPDT model

Table 12.3 Controller Design Relations Based on the ITAE Performance Index and a First-

Order plus Time-Delay Model [6-8]*				
Type of Input	Type of Controller	Mode	Α	В
Load	PI	Р	0.859	-0.977
		I	0.674	-0.680
Load	PID	P	1.357	-0.947
		I	0.842	-0.738
		D	0.381	0.995
Set point	PI	Р	0.586	-0.916
		I	1.03 ^b	-0.165 ^b
Set point	PID	Р	0.965	-0.85
		I	0.796 ^b	-0.1465b
		D	0.308	0.929

*Design relation: $Y = A(\theta/\tau)^{\beta}$ where $Y = KK_{\epsilon}$ for the proportional mode, τ/τ_{ϵ} for the integral mode, and τ_{0}/τ for the derivative mode. *For set-point changes, the design relation for the integral mode is $\tau/\tau_{\epsilon} = A + B(\theta/\tau)$. [8]

 Similar design relations based on IAE and ISE for other types of models can be found in literatures.

CHBE320 Process Dynamics and Control

Korea University 11-14

- For the processes who have sigmoidal shape step responses (Not for underdamped processes)
- Fit the curve with FOPDT model

$Ke^{-\theta s}$		
$G(s) = \frac{1}{(\tau s + 1)}$	$S = K \Delta u / \tau$	$S^* = S/\Delta u = K/\tau$

Table 13.3 Ziegler-Nichols Tuning Relations (Process Reaction Curve Method)

Controller Type	Kc	τ,	τ _D	
Р	$\frac{1}{\theta S^*}$	_	-	
PI	$\frac{0.9}{\theta S^*}$	3.330	-	
PID	$\frac{1.2}{\Theta S^*}$	20	0.50	

- Very simple
- Inherits all the problems of FOPDT model fitting

CHBE320 Process Dynamics and Control

Korea University 11-16

Λ

MISCELLANEOUS TUNING RELATIONS

Hägglund and Åström (2002)

Table 12.4 PI Controller Settings: Hägglund and Åström (2002)			
G(s)	Kc	τι	
$\frac{Ke^{-\theta s}}{s}$	$\frac{0.35}{K\theta}$	70	
$\frac{Ke^{-0s}}{\tau s+1}$	$\frac{0.14}{K} + \frac{0.28\tau}{\theta K}$	$0.33\theta + \frac{6.8\theta\tau}{10\theta + \tau}$	

Skogestad (2003)

	Skogestau (2	003)	
Conditions	Kc	τι	τ_D
$\tau_1 \le 8\theta$	$\frac{0.5(\tau_1 + \tau_2)}{K\theta}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
$\tau_1 \ge 8\theta$	$\frac{0.5\tau_1}{(8\theta + \tau_2)}$	80 + 72	8072

 Ziegler-Nichols (1942) and Cohen-Coon (1953) are not recommended since their relations are base on 1/4-decay ratio.

CHBE320 Process Dynamics and Control

Korea University 11-17

CONTROLLERS WITH TWO DEGREES OF FREEDOM

- · Trade-off between set-point tracking and disturbance rejection
- Tuning for disturbance rejection is more aggressive.
- In general, disturbance rejection is more important. Thus, tune the controller for satisfactory disturbance rejection.
- Controllers with two degrees of freedom (Goodwin et al., 2001)
- Strategies to adjust set-point tracking and disturbance rejection independently
- 1. Gradual change in set point (ramp or filtered)

$$\frac{Y_{sp}^*}{Y_{sp}} = \frac{1}{\tau_f s + 1}$$
 (filtered as first order)

2. Modification of PID control law

$$p(t) = \bar{p} + K_c(\beta y_{sp} - y_m) + K_c\left(\frac{1}{\tau_I}\int_0^t e(t^*)dt^* - \tau_D \frac{dy_m}{dt}\right) \ (0 < \beta < 1)$$

• As b increase, the set-point response becomes faster but more overshoot.

CHBE320 Process Dynamics and Control

Korea University 11-18

DIRECT SYNTHESIS METHOD

- Analysis: Given G_c(s), what is y(t)?
- Design: Given $y_d(t)$, what should $G_c(s)$ be?
- Derivation

Let
$$G_{OL} = K_m G_c G_v G_p \triangleq G_c G$$

$$\frac{Y(s)}{R(s)} = \frac{G_{OL}}{1 + G_{OL}} = \frac{G_c G}{1 + G_c G} \Rightarrow G_c = \frac{1}{G} \left(\frac{Y/R}{1 - Y/R} \right)$$

Specify $(Y/R)_d \Rightarrow G_c = \frac{1}{G} \left(\frac{(Y/R)_d}{1 - (Y/R)_d} \right)$

- If $(Y/R)_d = 1$, then it implies perfect control. (infinite gain)
- The resulting controller may not be physically realizable
- Or, not in PID form and too complicated.

- Design with finite settling time:
$$(Y/R)_d = \frac{1}{\tau_c s + 1}$$

CHBE320 Process Dynamics and Control

Korea University 11-19

1. Perfect control (
$$K_c$$
 becomes infinite)
 $G(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$ and $(Y/R)_d = 1$

$$G_c(s) = \frac{1}{G(s)} \left(\frac{1}{1-1} \right) = \frac{\infty}{G(s)}$$
 (infinite gain, unrealizable)

2. Finite settling time for 1st-order process

$$G(s) = \frac{K}{(\tau s + 1)}$$
 and $(Y/R)_d = \frac{1}{\tau_c s + 1}$

$$G_{c}(s) = \frac{1}{G(s)} \left(\frac{1/(\tau_{c}s+1)}{1-1/(\tau_{c}s+1)} \right) = \frac{\tau s+1}{K\tau_{c}s} = \frac{\tau}{\tau_{c}K} \left(1 + \frac{1}{\tau s} \right)$$
(PI)

**3. Finite settling time for
$$2^{nd}$$
-order process**

$$G(s) = \frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)}$$
 and $(Y/R)_d = \frac{1}{\tau_c s + 1}$

$$G_c(s) = \frac{(\tau_1 + \tau_2)}{\tau_c K} \left(1 + \frac{1}{(\tau_1 + \tau_2)s} + \frac{\tau_1 \tau_2}{(\tau_1 + \tau_2)}s \right) \text{ (PID)}$$

CHBE320 Process Dynamics and Control

Process with time delay

- If there is a time delay, any physically realizable controller cannot overcome the time delay. (Need time lead)
- Given circumstance, a reasonable choice will be

$$(Y/R)_d = \frac{e^{-\theta_c s}}{\tau_c s + 1}$$

$$\begin{array}{l} \textbf{-Examples} & \textbf{Ke}^{-\theta s} \\ \textbf{1.} & G(s) = \frac{Ke^{-\theta s}}{(\tau s+1)} \text{ and } (Y/R)_d = \frac{e^{-\theta}}{\tau_c s+1} (\theta_c = \theta) \\ & \textbf{G}_c(s) = \frac{1}{G(s)} \left(\frac{e^{-\theta} / (\tau_c s+1)}{1 - e^{-\theta s} / (\tau_c s+1)} \right) = \frac{\tau s+1}{K} \frac{1}{|\tau_c s+1 - e^{-\theta s}|} (\text{not a PID}) \\ \textbf{2. With 1^{st}-order Taylor series approx. (} e^{-\theta} \approx 1 - \theta s) \\ & G_c(s) = \frac{\tau s+1}{K} \frac{1}{(\tau_c + \theta) s} = \frac{\tau}{K(\tau_c + \theta)} \left(1 + \frac{1}{\tau s} \right) (\text{PI}) \\ \textbf{3.} & G(s) = \frac{Ke^{-\theta}}{(\tau_1 s+1)(\tau_2 s+1)} \text{ and } (Y/R)_d = \frac{e^{-\theta}}{\tau_c s+1} (\theta_c = \theta) \\ & G_c(s) = \frac{(\tau_1 s+1)(\tau_2 s+1)}{K} \frac{1}{(\tau_c + \theta) s} = \frac{(\tau_1 + \tau_2)}{K(\tau_c + \theta)} \left(1 + \frac{1}{(\tau_1 + \tau_2) s} + \frac{\tau_1 \tau_2}{(\tau_1 + \tau_2)} s \right) (\text{PID}) \end{array}$$

INTERNAL MODEL CONTROL (IMC)

- The resulting controller from direct synthesis method may not

- If there is RHP zero in the process, the resulting controller from direct synthesis method will be unstable. - Unmeasured disturbance and modeling error are not

CHBE320 Process Dynamics and Control

Motivation

be physically unrealizable.

- From direct synthesis method

considered in direct synthesis method.

E.

Observations on Direct Synthesis Method

- Resulting controllers could be quite complex and may not even be physically realizable.
- PID parameters will be decided by a user-specified parameter: The desired closed-loop time constant (τ_c)
- The shorter τ_c makes the action more aggressive. (larger K_c)
- The longer τ_c makes the action more conservative. (smaller K_c)
- For a limited cases, it results PID form.
 - 1st-order model without time delay: PI
 - FOPDT with 1st-order Taylor series approx.: PI
- 2nd-order model without time delay: PID
- SOPDT with 1st-order Taylor series approx.: PID
- Delay modifies the K...

$$\frac{\tau}{K\tau_c} \to \frac{\tau}{K(\tau_c + \theta)} \text{ (1st order)} \qquad \qquad \frac{(\tau_1 + \tau_2)}{K\tau_c} \to \frac{(\tau_1 + \tau_2)}{K(\tau_c + \theta)} \text{ (2nd order)}$$

• With time delay, the K_c will not become infinite even for the perfect control (Y/R=1).

CHBE320 Process Dynamics and Control

Korea University 11-22

• IMC

- Feedback the error between the process output and model output.
- Equivalent conventional controller: $G_c = \frac{G_c^*}{1 G_c^* \tilde{G}}$

Using block diagram algebra

$$C = GP + L \quad P = G_c^* E \quad E = R - (C - \tilde{C}) = R - C + \tilde{G}P$$

$$P = G_c^* (R - C + \tilde{G}P)$$

$$\Rightarrow P = G_c^* (R - C) / (1 - G_c^* \tilde{G})$$

$$C = GG_{c}^{*}(R - C)/(1 - G_{c}^{*}\tilde{G}) + L$$

(1 + GG_{c}^{*} - G_{c}^{*}\tilde{G})C = GG_{c}^{*}R + (1 - G_{c}^{*}\tilde{G})L

$$C = \frac{G_c^* G}{1 + G_c^* (G - \tilde{G})} R + \frac{(1 - G_c^* G)}{1 + G_c^* (G - \tilde{G})} L$$

If $\tilde{G} = G$, $C = G_c^* GR + (1 - G_c^* G)L$

CHBE320 Process Dynamics and Control

Korea University 11-24

Direct inversion of process causes many problems CHBE320 Process Dynamics and Control

Source of trouble

Korea University 11-23

Resulting controller may have higher-order numerator than

denominator

Process is unknown

IMC design strategy

- Factor the process model as

$$ilde{G} = \left(\widetilde{G}_+ \widetilde{G}_- \right)$$
 Uninvertibles

• \tilde{G}_+ contains any time delays and RHP zeros and is specified so that the steady-state gain is one

G̃₋ is the rest of *G*.

- The controller is specified as

$$G_c^* = \frac{1}{\tilde{G}_-}f$$

•

• IMC filter *f* is a low-pass filter with steady-state gain of one

Typical IMC filter:
$$f = \frac{1}{(\tau_c s + 1)^r}$$

• The τ_c is the desired closed-loop time constant and parameter r is a positive integer that is selected so that the order of numerator of G_c^* is same as the order of denominator or exceeds the order of denominator by one.

CHBE320 Process Dynamics and Control

```
Korea University 11-25
```

• Example - FOPDT model with 1/1 Pade approximation $\tilde{G} = \frac{K(1 - \theta s/2)}{(1 + \theta s/2)(\tau s + 1)}$ $\tilde{G}_{+} = 1 - \theta s/2 \quad \tilde{G}_{-} = \frac{K}{(1 + \theta s/2)(\tau s + 1)}$ $G_{c}^{*} = \frac{1}{\tilde{G}_{-}}f = \frac{(1 + \theta s/2)(\tau s + 1)}{K} \frac{1}{(\tau_{c} s + 1)}$ $G_{c} = \frac{G_{c}^{*}}{1 - G_{c}^{*}\tilde{G}} = \frac{(1 + \theta s/2)(\tau s + 1)}{K(\tau_{c} + \theta/2)s} \quad (\text{PID})$ $K_{c} = \frac{1}{K} \frac{(\tau + \theta/2)}{(\tau_{c} + \theta/2)} \quad \tau_{I} = \tau + \theta/2 \quad \tau_{D} = \frac{\tau \theta/2}{\tau + \theta/2}$

CHBE320 Process Dynamics and Control

Korea University 11-26

IMC based PID controller settings

Table 12.1 IMC-Based PID Controller Settings for $G_c(s)$ [4] ^a					
Case	Model	K _c K	τ,	τ _D	
А	$\frac{K}{\tau s + 1}$	$\frac{\tau}{\tau_c}$	т	_	
В	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1 + \tau_2}$	
С	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$	
D	$\frac{K(-\beta s+1)}{\tau^2 s^2+2\zeta\tau s+1},\beta>0$	$\frac{2\zeta\tau}{\tau_c + \beta}$	2ζτ	$\frac{\tau}{2\zeta}$	
Е	$\frac{K}{s}$	$\frac{1}{\tau_c}$	-	_	
F	$\frac{K}{s(\tau s + 1)}$	$\frac{1}{\tau_c}$	_	τ	

^{*}Based on Eq. 12-30 with r = 1.

CHBE320 Process Dynamics and Control

Korea University 11-27

IMC based PID controller settings

Case	Model	K_cK	77	τD
A	$\frac{K}{\tau s + 1}$	$\frac{\tau}{\tau_c}$.	τ	-
В	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1+\tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
С	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$
D	$\frac{K(-\beta s+1)}{\tau^2 s^2+2\zeta\tau s+1},\ \beta>0$	$\frac{2\zeta\tau}{\tau_c+\beta}$	2ζτ	$\frac{\tau}{2\zeta}$
Е	<u>K</u>	$\frac{2}{\tau_c}$	27c	-
F	$\frac{K}{s(\tau s + 1)}$	$\frac{2\tau_c + \tau}{\tau_c^2}$	$2\tau_c + \tau$	$\frac{2\tau_c\tau}{2\tau_c+\tau}$
G	$\frac{Ke^{-4a}}{\pi r + 1}$	$\frac{\tau}{\tau_c + \theta}$	т	
Н	$\frac{Ke^{-in}}{\pi s+1}$	$\frac{\tau + \frac{\theta}{2}}{\tau_c + \frac{\theta}{2}}$	$\tau + \frac{\theta}{2}$	$\frac{\tau\theta}{2\tau+\theta}$
I	$\frac{K(\tau_3 s + 1)e^{-4s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1+\tau_2-\tau_3}{\tau_c+\theta}$	$\tau_1+\tau_2-\tau_3$	$\frac{\tau_1\tau_2-(\tau_1+\tau_2-\tau_3)\tau_3}{\tau_1+\tau_2-\tau_3}$
J	$\frac{K(\tau_2 s + 1)e^{-\pi s}}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau-\tau_3}{\tau_c+\theta}$	$2\zeta\tau-\tau_3$	$\frac{\tau^2-(2\zeta\tau-\tau_3)\tau_3}{2\zeta\tau-\tau_3}$
K	$\frac{K(-\tau_3 s+1) e^{-\theta s}}{(\tau_1 s+1)(\tau_2 s+1)}$	$\frac{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}{\tau_c+\tau_3+\theta}$	$\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau_1\tau_2}{\tau_1+\tau_2+\frac{\tau_3}{\tau_c+\tau_3}}$
L	$\frac{K(-\tau_3 s+1)e^{-6s}}{\tau^2 s^2+2\zeta\tau s+1}$	$\frac{2\zeta\tau+\frac{\tau_{3}\theta}{\tau_{c}+\tau_{3}+\theta}}{\tau_{c}+\tau_{e}+\theta}$	$2\zeta\tau+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}$	$\frac{\tau_{1}\theta}{\tau_{c}+\tau_{3}+\theta}+\frac{\tau^{2}}{2\zeta\tau+\frac{\tau_{1}\theta}{\tau_{c}+\tau_{c}+\tau_{1}}}$
М	$\frac{Ke^{-i\alpha}}{s}$	$\frac{2\tau_c+\theta}{(\tau_c+\theta)^2}$	$2\tau_c + \theta$	-
N	$\frac{Ke^{-4s}}{s}$	$\frac{2\tau_c + \theta}{\left(\tau_c + \frac{\theta}{2}\right)^2}$	$2\tau_c + \theta$	$\frac{\tau_c\theta+\frac{\theta^2}{4}}{2\tau_c+\theta}$
0	$\frac{Ke^{-in}}{i(\pi s+1)}$	$\frac{2\tau_c + \tau + \theta}{(\tau_c + \theta)^2}$	$2\tau_c + \tau + \theta$	$\frac{(2\tau_c + \theta)\tau}{2\tau_c + \tau_c + \theta}$

CHBE320 Process Dynamics and Control

- Modification of IMC and DS methods
 - For lag dominant models (θ/τ<<1), IMC and DS methods provide satisfactory set-point response, but very slow disturbance responses because the value τ_i is very large.
 - Approximate the FOPDT with IPDT model and use IMC tuning relation for IPDT model

$$G(s) = \frac{Ke^{-\theta s}}{\tau s + 1} \Rightarrow G(s) = \frac{K^* e^{-\theta}}{s}$$
 where $K^* \triangleq K/\tau$

- Limit the value of τ_I

 $\tau_I = \min\{\tau_I, 4(\tau_c + \theta)\}$

- Design the controller for disturbance rejection
- CHBE320 Process Dynamics and Control

Korea University 11-29

COMPARISON OF CONTROLLER DESIGN RELATIONS

· PI controller settings for different methods

$$G(s) = \frac{2e^{-s}}{s+1}$$

EFFECT OF MODELING ERROR

CHBE320 Process Dynamics and Control

Korea University 11-31

GENERAL CONCLUSION FOR PID TUNING

- The controller gain should be inversely proportional to the products of the other gains in the feedback loop.
- The controller gain should decrease as the ratio of time delay to dominant time constant increases.
- The larger the ratio of time delay to dominant time constant is, the harder the system is to control.
- The reset time and the derivative time should increase as the ratio of time delay to dominant time constant increases.
- The ratio between derivative time and reset time is typically between 0.1 to 0.3.
- The ¼ decay ratio is too oscillatory for process control. If less oscillatory response is desired, the controller gain should decrease and reset time should increase.
- Among IAE, ISE and ITAE, ITAE is the most conservative and ISE is the least conservative setting.

CHBE320 Process Dynamics and Control

TROUBLESHOOTING CONTROL LOOPS

- Causes of performance degradation of controller
 - Changing process conditions, usually throughput rate
 - Sticking control valve stem
 - Plugged line in a pressure or DP transmitter
 - Fouled heat exchangers, especially reboilers for distillation
 - Cavitating pumps

Starting points of trouble shooting

- What is the process being controlled?
- What is the controlled variable?
- What are the control objectives?
- Are closed-loop response data available?
- Is the controller in the M/A mode? Is it reverse or direct acting?
- If the pressure is cycling, what is the cycling frequency?
- What control algorithm is used? What are the controller settings?
- Is the process open-loop stable?

- What additional documentation is available? CHBE320 Process Dynamics and Control

Korea University 11-33

Checking points

- Components in the control loop (process, sensor, actuator, ...)

- Field instruments vs. instruments in central control room
 Recent changes to the equipment or instrumentation
 - (cleaning HX, catalyst replacement, transmitter span, ...
- Sensor lines (particles, bubbles)
- Control valve sticking
- Controller tuning parameters

CHBE320 Process Dynamics and Control